BOSL2/quaternions.scad

658 lines
22 KiB
OpenSCAD

///////////////////////////////////////////
// LibFile: quaternions.scad
// Support for Quaternions.
// Includes:
// include <BOSL2/std.scad>
///////////////////////////////////////////
// Section: Quaternions
// Quaternions are fast methods of storing and calculating arbitrary rotations.
// Quaternions contain information on both axis of rotation, and rotation angle.
// You can chain multiple rotation together by multiplying quaternions together.
// They don't suffer from the gimbal-lock issues that `[X,Y,Z]` rotation angles do.
// Quaternions are stored internally as a 4-value vector:
// `[X,Y,Z,W]`, where the quaternion formula is `W+Xi+Yj+Zk`
// Internal
function _Quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w];
function _Qvec(q) = [q.x,q.y,q.z];
function _Qreal(q) = q[3];
function _Qset(v,r) = concat( v, r );
// normalizes without checking
function _Qnorm(q) = q/norm(q);
// Function: Q_is_quat()
// Usage:
// if(Q_is_quat(q)) a=0;
// Description: Return true if q is a valid non-zero quaternion.
// Arguments:
// q = object to check.
function Q_is_quat(q) = is_vector(q,4) && ! approx(norm(q),0) ;
// Function: Quat()
// Usage:
// Quat(ax, ang);
// Description: Create a normalized Quaternion from axis and angle of rotation.
// Arguments:
// ax = Vector of axis of rotation.
// ang = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function Quat(ax=[0,0,1], ang=0) =
assert( is_vector(ax,3) && is_finite(ang), "Invalid input")
let( n = norm(ax) )
approx(n,0)
? _Quat([0,0,0], sin(ang/2), cos(ang/2))
: _Quat(ax/n, sin(ang/2), cos(ang/2));
// Function: QuatX()
// Usage:
// QuatX(a);
// Description: Create a normalized Quaternion for rotating around the X axis [1,0,0].
// Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function QuatX(a=0) =
assert( is_finite(a), "Invalid angle" )
Quat([1,0,0],a);
// Function: QuatY()
// Usage:
// QuatY(a);
// Description: Create a normalized Quaternion for rotating around the Y axis [0,1,0].
// Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function QuatY(a=0) =
assert( is_finite(a), "Invalid angle" )
Quat([0,1,0],a);
// Function: QuatZ()
// Usage:
// QuatZ(a);
// Description: Create a normalized Quaternion for rotating around the Z axis [0,0,1].
// Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function QuatZ(a=0) =
assert( is_finite(a), "Invalid angle" )
Quat([0,0,1],a);
// Function: QuatXYZ()
// Usage:
// QuatXYZ([X,Y,Z])
// Description:
// Creates a normalized quaternion from standard [X,Y,Z] rotation angles in degrees.
// Arguments:
// a = The triplet of rotation angles, [X,Y,Z]
function QuatXYZ(a=[0,0,0]) =
assert( is_vector(a,3), "Invalid angles")
let(
qx = QuatX(a[0]),
qy = QuatY(a[1]),
qz = QuatZ(a[2])
)
Q_Mul(qz, Q_Mul(qy, qx));
// Function: Q_From_to()
// Usage:
// q = Q_From_to(v1, v2);
// Description:
// Returns the normalized quaternion that rotates the non zero 3D vector v1
// to the non zero 3D vector v2.
function Q_From_to(v1, v2) =
assert( is_vector(v1,3) && is_vector(v2,3)
&& ! approx(norm(v1),0) && ! approx(norm(v2),0)
, "Invalid vector(s)")
let( ax = cross(v1,v2),
n = norm(ax) )
approx(n, 0)
? v1*v2>0 ? Q_Ident() : Quat([ v1.y, -v1.x, 0], 180)
: Quat(ax, atan2( n , v1*v2 ));
// Function: Q_Ident()
// Description: Returns the "Identity" zero-rotation Quaternion.
function Q_Ident() = [0, 0, 0, 1];
// Function: Q_Add_S()
// Usage:
// Q_Add_S(q, s)
// Description:
// Adds a scalar value `s` to the W part of a quaternion `q`.
// The returned quaternion is usually not normalized.
function Q_Add_S(q, s) =
assert( is_finite(s), "Invalid scalar" )
q+[0,0,0,s];
// Function: Q_Sub_S()
// Usage:
// Q_Sub_S(q, s)
// Description:
// Subtracts a scalar value `s` from the W part of a quaternion `q`.
// The returned quaternion is usually not normalized.
function Q_Sub_S(q, s) =
assert( is_finite(s), "Invalid scalar" )
q-[0,0,0,s];
// Function: Q_Mul_S()
// Usage:
// Q_Mul_S(q, s)
// Description:
// Multiplies each part of a quaternion `q` by a scalar value `s`.
// The returned quaternion is usually not normalized.
function Q_Mul_S(q, s) =
assert( is_finite(s), "Invalid scalar" )
q*s;
// Function: Q_Div_S()
// Usage:
// Q_Div_S(q, s)
// Description:
// Divides each part of a quaternion `q` by a scalar value `s`.
// The returned quaternion is usually not normalized.
function Q_Div_S(q, s) =
assert( is_finite(s) && ! approx(s,0) , "Invalid scalar" )
q/s;
// Function: Q_Add()
// Usage:
// Q_Add(a, b)
// Description:
// Adds each part of two quaternions together.
// The returned quaternion is usually not normalized.
function Q_Add(a, b) =
assert( Q_is_quat(a) && Q_is_quat(a), "Invalid quaternion(s)")
assert( ! approx(norm(a+b),0), "Quaternions cannot be opposed" )
a+b;
// Function: Q_Sub()
// Usage:
// Q_Sub(a, b)
// Description:
// Subtracts each part of quaternion `b` from quaternion `a`.
// The returned quaternion is usually not normalized.
function Q_Sub(a, b) =
assert( Q_is_quat(a) && Q_is_quat(a), "Invalid quaternion(s)")
assert( ! approx(a,b), "Quaternions cannot be equal" )
a-b;
// Function: Q_Mul()
// Usage:
// Q_Mul(a, b)
// Description:
// Multiplies quaternion `a` by quaternion `b`.
// The returned quaternion is normalized if both `a` and `b` are normalized
function Q_Mul(a, b) =
assert( Q_is_quat(a) && Q_is_quat(b), "Invalid quaternion(s)")
[
a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y,
a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x,
a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3],
a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z,
];
// Function: Q_Cumulative()
// Usage:
// Q_Cumulative(v);
// Description:
// Given a list of Quaternions, cumulatively multiplies them, returning a list
// of each cumulative Quaternion product. It starts with the first quaternion
// given in the list, and applies successive quaternion rotations in list order.
// The quaternion in the returned list are normalized if each quaternion in v
// is normalized.
function Q_Cumulative(v, _i=0, _acc=[]) =
_i==len(v) ? _acc :
Q_Cumulative(
v, _i+1,
concat(
_acc,
[_i==0 ? v[_i] : Q_Mul(v[_i], last(_acc))]
)
);
// Function: Q_Dot()
// Usage:
// Q_Dot(a, b)
// Description: Calculates the dot product between quaternions `a` and `b`.
function Q_Dot(a, b) =
assert( Q_is_quat(a) && Q_is_quat(b), "Invalid quaternion(s)" )
a*b;
// Function: Q_Neg()
// Usage:
// Q_Neg(q)
// Description: Returns the negative of quaternion `q`.
function Q_Neg(q) =
assert( Q_is_quat(q), "Invalid quaternion" )
-q;
// Function: Q_Conj()
// Usage:
// Q_Conj(q)
// Description: Returns the conjugate of quaternion `q`.
function Q_Conj(q) =
assert( Q_is_quat(q), "Invalid quaternion" )
[-q.x, -q.y, -q.z, q[3]];
// Function: Q_Inverse()
// Usage:
// qc = Q_Inverse(q)
// Description: Returns the multiplication inverse of quaternion `q` that is normalized only if `q` is normalized.
function Q_Inverse(q) =
assert( Q_is_quat(q), "Invalid quaternion" )
let(q = _Qnorm(q) )
[-q.x, -q.y, -q.z, q[3]];
// Function: Q_Norm()
// Usage:
// Q_Norm(q)
// Description:
// Returns the `norm()` "length" of quaternion `q`.
// Normalized quaternions have unitary norm.
function Q_Norm(q) =
assert( Q_is_quat(q), "Invalid quaternion" )
norm(q);
// Function: Q_Normalize()
// Usage:
// Q_Normalize(q)
// Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1.
function Q_Normalize(q) =
assert( Q_is_quat(q) , "Invalid quaternion" )
q/norm(q);
// Function: Q_Dist()
// Usage:
// Q_Dist(q1, q2)
// Description: Returns the "distance" between two quaternions.
function Q_Dist(q1, q2) =
assert( Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" )
norm(q2-q1);
// Function: Q_Slerp()
// Usage:
// Q_Slerp(q1, q2, u);
// Description:
// Returns a quaternion that is a spherical interpolation between two quaternions.
// Arguments:
// q1 = The first quaternion. (u=0)
// q2 = The second quaternion. (u=1)
// u = The proportional value, from 0 to 1, of what part of the interpolation to return.
// Example(3D): Giving `u` as a Scalar
// a = QuatY(-135);
// b = QuatXYZ([0,-30,30]);
// for (u=[0:0.1:1])
// Qrot(Q_Slerp(a, b, u))
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): Giving `u` as a Range
// a = QuatZ(-135);
// b = QuatXYZ([90,0,-45]);
// for (q = Q_Slerp(a, b, [0:0.1:1]))
// Qrot(q) right(80) cube([10,10,1]);
// #sphere(r=80);
function Q_Slerp(q1, q2, u, _dot) =
is_undef(_dot)
? assert(is_finite(u) || is_range(u) || is_vector(u), "Invalid interpolation coefficient(s)")
assert(Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" )
let(
_dot = q1*q2,
q1 = q1/norm(q1),
q2 = _dot<0 ? -q2/norm(q2) : q2/norm(q2),
dot = abs(_dot)
)
! is_finite(u) ? [for (uu=u) Q_Slerp(q1, q2, uu, dot)] :
Q_Slerp(q1, q2, u, dot)
: _dot>0.9995
? _Qnorm(q1 + u*(q2-q1))
: let( theta = u*acos(_dot),
q3 = _Qnorm(q2 - _dot*q1)
)
_Qnorm(q1*cos(theta) + q3*sin(theta));
// Function: Q_Matrix3()
// Usage:
// Q_Matrix3(q);
// Description:
// Returns the 3x3 rotation matrix for the given normalized quaternion q.
function Q_Matrix3(q) =
let( q = Q_Normalize(q) )
[
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]],
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]],
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1]]
];
// Function: Q_Matrix4()
// Usage:
// Q_Matrix4(q);
// Description:
// Returns the 4x4 rotation matrix for the given normalized quaternion q.
function Q_Matrix4(q) =
let( q = Q_Normalize(q) )
[
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0],
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0],
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1], 0],
[ 0, 0, 0, 1]
];
// Function: Q_Axis()
// Usage:
// Q_Axis(q)
// Description:
// Returns the axis of rotation of a normalized quaternion `q`.
// The input doesn't need to be normalized.
function Q_Axis(q) =
assert( Q_is_quat(q) , "Invalid quaternion" )
let( d = norm(_Qvec(q)) )
approx(d,0)? [0,0,1] : _Qvec(q)/d;
// Function: Q_Angle()
// Usage:
// a = Q_Angle(q)
// a12 = Q_Angle(q1,q2);
// Description:
// If only q1 is given, returns the angle of rotation (in degrees) of that quaternion.
// If both q1 and q2 are given, returns the angle (in degrees) between them.
// The input quaternions don't need to be normalized.
function Q_Angle(q1,q2) =
assert(Q_is_quat(q1) && (is_undef(q2) || Q_is_quat(q2)), "Invalid quaternion(s)" )
let( n1 = is_undef(q2)? norm(_Qvec(q1)): norm(q1) )
is_undef(q2)
? 2 * atan2(n1,_Qreal(q1))
: let( q1 = q1/norm(q1),
q2 = q2/norm(q2) )
4 * atan2(norm(q1 - q2), norm(q1 + q2));
// Function&Module: Qrot()
// Usage: As Module
// Qrot(q) ...
// Usage: As Function
// pts = Qrot(q,p);
// Description:
// When called as a module, rotates all children by the rotation stored in quaternion `q`.
// When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`.
// When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`.
// Example(FlatSpin,VPD=225,VPT=[71,-26,16]):
// module shape() translate([80,0,0]) cube([10,10,1]);
// q = QuatXYZ([90,-15,-45]);
// Qrot(q) shape();
// #shape();
// Example(NORENDER):
// q = QuatXYZ([45,35,10]);
// mat4x4 = Qrot(q);
// Example(NORENDER):
// q = QuatXYZ([45,35,10]);
// pt = Qrot(q, p=[4,5,6]);
// Example(NORENDER):
// q = QuatXYZ([45,35,10]);
// pts = Qrot(q, p=[[2,3,4], [4,5,6], [9,2,3]]);
module Qrot(q) {
multmatrix(Q_Matrix4(q)) {
children();
}
}
function Qrot(q,p) =
is_undef(p)? Q_Matrix4(q) :
is_vector(p)? Qrot(q,[p])[0] :
apply(Q_Matrix4(q), p);
// Module: Qrot_copies()
// Usage:
// Qrot_copies(quats) ...
// Description:
// For each quaternion given in the list `quats`, rotates to that orientation and creates a copy
// of all children. This is equivalent to `for (q=quats) Qrot(q) ...`.
// Arguments:
// quats = A list containing all quaternions to rotate to and create copies of all children for.
// Example:
// a = QuatZ(-135);
// b = QuatXYZ([0,-30,30]);
// Qrot_copies(Q_Slerp(a, b, [0:0.1:1]))
// right(80) cube([10,10,1]);
// #sphere(r=80);
module Qrot_copies(quats) for (q=quats) Qrot(q) children();
// Function: Q_Rotation()
// Usage:
// Q_Rotation(R)
// Description:
// Returns a normalized quaternion corresponding to the rotation matrix R.
// R may be a 3x3 rotation matrix or a homogeneous 4x4 rotation matrix.
// The last row and last column of R are ignored for 4x4 matrices.
// It doesn't check whether R is in fact a rotation matrix.
// If R is not a rotation, the returned quaternion is an unpredictable quaternion .
function Q_Rotation(R) =
assert( is_matrix(R,3,3) || is_matrix(R,4,4) ,
"Matrix is neither 3x3 nor 4x4")
let( tr = R[0][0]+R[1][1]+R[2][2] ) // R trace
tr>0
? let( r = 1+tr )
_Qnorm( _Qset([ R[1][2]-R[2][1], R[2][0]-R[0][2], R[0][1]-R[1][0] ], -r ) )
: let( i = max_index([ R[0][0], R[1][1], R[2][2] ]),
r = 1 + 2*R[i][i] -R[0][0] -R[1][1] -R[2][2] )
i==0 ? _Qnorm( _Qset( [ 4*r, (R[1][0]+R[0][1]), (R[0][2]+R[2][0]) ], (R[2][1]-R[1][2])) ):
i==1 ? _Qnorm( _Qset( [ (R[1][0]+R[0][1]), 4*r, (R[2][1]+R[1][2]) ], (R[0][2]-R[2][0])) ):
_Qnorm( _Qset( [ (R[2][0]+R[0][2]), (R[1][2]+R[2][1]), 4*r ], (R[1][0]-R[0][1])) ) ;
// Function&Module: Q_Rotation_path()
// Usage: As a function
// path = Q_Rotation_path(q1, n, q2);
// path = Q_Rotation_path(q1, n);
// Usage: As a module
// Q_Rotation_path(q1, n, q2) ...
// Description:
// If q2 is undef and it is called as a function, the path, with length n+1 (n>=1), will be the
// cumulative multiplications of the matrix rotation of q1 by itself.
// If q2 is defined and it is called as a function, returns a rotation matrix path of length n+1 (n>=1)
// that interpolates two given rotation quaternions. The first matrix of the sequence is the
// matrix rotation of q1 and the last one, the matrix rotation of q2. The intermediary matrix
// rotations are an uniform interpolation of the path extreme matrices.
// When called as a module, applies to its children() each rotation of the sequence computed
// by the function.
// The input quaternions don't need to be normalized.
// Arguments:
// q1 = The quaternion of the first rotation.
// q2 = The quaternion of the last rotation.
// n = An integer defining the path length ( path length = n+1).
// Example(3D): as a function
// a = QuatY(-135);
// b = QuatXYZ([0,-30,30]);
// for (M=Q_Rotation_path(a, 10, b))
// multmatrix(M)
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): as a module
// a = QuatY(-135);
// b = QuatXYZ([0,-30,30]);
// Q_Rotation_path(a, 10, b)
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): as a function
// a = QuatY(5);
// for (M=Q_Rotation_path(a, 10))
// multmatrix(M)
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): as a module
// a = QuatY(5);
// Q_Rotation_path(a, 10)
// right(80) cube([10,10,1]);
// #sphere(r=80);
function Q_Rotation_path(q1, n=1, q2) =
assert( Q_is_quat(q1) && (is_undef(q2) || Q_is_quat(q2) ), "Invalid quaternion(s)" )
assert( is_finite(n) && n>=1 && n==floor(n), "Invalid integer" )
assert( is_undef(q2) || ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" )
is_undef(q2)
? [for( i=0, dR=Q_Matrix4(q1), R=dR; i<=n; i=i+1, R=dR*R ) R]
: let( q2 = Q_Normalize( q1*q2<0 ? -q2: q2 ),
dq = Q_pow( Q_Mul( q2, Q_Inverse(q1) ), 1/n ),
dR = Q_Matrix4(dq) )
[for( i=0, R=Q_Matrix4(q1); i<=n; i=i+1, R=dR*R ) R];
module Q_Rotation_path(q1, n=1, q2) {
for(Mi=Q_Rotation_path(q1, n, q2))
multmatrix(Mi)
children();
}
// Function: Q_Nlerp()
// Usage:
// q = Q_Nlerp(q1, q2, u);
// Description:
// Returns a quaternion that is a normalized linear interpolation between two quaternions
// when u is a number.
// If u is a list of numbers, computes the interpolations for each value in the
// list and returns the interpolated quaternions in a list.
// The input quaternions don't need to be normalized.
// Arguments:
// q1 = The first quaternion. (u=0)
// q2 = The second quaternion. (u=1)
// u = A value (or a list of values), between 0 and 1, of the proportion(s) of each quaternion in the interpolation.
// Example(3D): Giving `u` as a Scalar
// a = QuatY(-135);
// b = QuatXYZ([0,-30,30]);
// for (u=[0:0.1:1])
// Qrot(Q_Nlerp(a, b, u))
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): Giving `u` as a Range
// a = QuatZ(-135);
// b = QuatXYZ([90,0,-45]);
// for (q = Q_Nlerp(a, b, [0:0.1:1]))
// Qrot(q) right(80) cube([10,10,1]);
// #sphere(r=80);
function Q_Nlerp(q1,q2,u) =
assert(is_finite(u) || is_range(u) || is_vector(u) ,
"Invalid interpolation coefficient(s)" )
assert(Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" )
assert( ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" )
let( q1 = Q_Normalize(q1),
q2 = Q_Normalize(q2) )
is_num(u)
? _Qnorm((1-u)*q1 + u*q2 )
: [for (ui=u) _Qnorm((1-ui)*q1 + ui*q2 ) ];
// Function: Q_Squad()
// Usage:
// qn = Q_Squad(q1,q2,q3,q4,u);
// Description:
// Returns a quaternion that is a cubic spherical interpolation of the quaternions
// q1 and q4 taking the other two quaternions, q2 and q3, as parameter of a cubic
// on the sphere similar to the control points of a Bezier curve.
// If u is a number, usually between 0 and 1, returns the quaternion that results
// from the interpolation.
// If u is a list of numbers, computes the interpolations for each value in the
// list and returns the interpolated quaternions in a list.
// The input quaternions don't need to be normalized.
// Arguments:
// q1 = The start quaternion. (u=0)
// q1 = The first intermediate quaternion.
// q2 = The second intermediate quaternion.
// q4 = The end quaternion. (u=1)
// u = A value (or a list of values), of the proportion(s) of each quaternion in the cubic interpolation.
// Example(3D): Giving `u` as a Scalar
// a = QuatY(-135);
// b = QuatXYZ([-50,-50,120]);
// c = QuatXYZ([-50,-40,30]);
// d = QuatY(-45);
// color("red"){
// Qrot(b) right(80) cube([10,10,1]);
// Qrot(c) right(80) cube([10,10,1]);
// }
// for (u=[0:0.05:1])
// Qrot(Q_Squad(a, b, c, d, u))
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): Giving `u` as a Range
// a = QuatY(-135);
// b = QuatXYZ([-50,-50,120]);
// c = QuatXYZ([-50,-40,30]);
// d = QuatY(-45);
// for (q = Q_Squad(a, b, c, d, [0:0.05:1]))
// Qrot(q) right(80) cube([10,10,1]);
// #sphere(r=80);
function Q_Squad(q1,q2,q3,q4,u) =
assert(is_finite(u) || is_range(u) || is_vector(u) ,
"Invalid interpolation coefficient(s)" )
is_num(u)
? Q_Slerp( Q_Slerp(q1,q4,u), Q_Slerp(q2,q3,u), 2*u*(1-u))
: [for(ui=u) Q_Slerp( Q_Slerp(q1,q4,ui), Q_Slerp(q2,q3,ui), 2*ui*(1-ui) ) ];
// Function: Q_exp()
// Usage:
// q2 = Q_exp(q);
// Description:
// Returns the quaternion that is the exponential of the quaternion q in base e
// The returned quaternion is usually not normalized.
function Q_exp(q) =
assert( is_vector(q,4), "Input is not a valid quaternion")
let( nv = norm(_Qvec(q)) ) // q may be equal to zero here!
exp(_Qreal(q))*Quat(_Qvec(q),2*nv);
// Function: Q_ln()
// Usage:
// q2 = Q_ln(q);
// Description:
// Returns the quaternion that is the natural logarithm of the quaternion q.
// The returned quaternion is usually not normalized and may be zero.
function Q_ln(q) =
assert(Q_is_quat(q), "Input is not a valid quaternion")
let( nq = norm(q),
nv = norm(_Qvec(q)) )
approx(nv,0) ? _Qset([0,0,0] , ln(nq) ) :
_Qset(_Qvec(q)*atan2(nv,_Qreal(q))/nv, ln(nq));
// Function: Q_pow()
// Usage:
// q2 = Q_pow(q, r);
// Description:
// Returns the quaternion that is the power of the quaternion q to the real exponent r.
// The returned quaternion is normalized if `q` is normalized.
function Q_pow(q,r=1) =
assert( Q_is_quat(q) && is_finite(r),
"Invalid inputs")
let( theta = 2*atan2(norm(_Qvec(q)),_Qreal(q)) )
Quat(_Qvec(q), r*theta); // Q_exp(r*Q_ln(q));
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap