// // Mendel90 // // GNU GPL v2 // nop.head@gmail.com // hydraraptor.blogspot.com // // Ends of the X axis // include use use use bwall = 2.3; bearing_dia = Z_bearings[1]; bearing_width = bearing_dia + 2 * bwall; bearing_depth = bearing_width / 2 + 1; bearing_length = Z_bearings[0]; shelf_thickness = 2; shelf_clearance = 0.5; bearing_height = max( min(65, 2.8 * bearing_length), 2 * (bearing_length + shelf_clearance) + 3 * shelf_thickness); shelves = [ shelf_thickness / 2, shelf_thickness + bearing_length + shelf_clearance + shelf_thickness / 2, bearing_height - shelf_thickness / 2, bearing_height - (shelf_thickness + bearing_length + shelf_clearance + shelf_thickness / 2) ]; module z_linear_bearings(motor_end) { rod_dia = Z_bearings[2]; opening = bearing_dia / 7; shelf_depth = bearing_depth - (rod_dia / 2 + 1); union() { difference(){ union(){ //main vertical block translate([-bearing_depth / 2, 0, bearing_height / 2]) cube([bearing_depth, bearing_width, bearing_height], center = true); cylinder(h = bearing_height, r = bearing_width / 2); } //hole for bearings translate([0, 0, -1]) cylinder(h = bearing_height + 2, r = bearing_dia / 2); //entry cut out translate([10 * sqrt(2) - opening, 0, bearing_height / 2]) rotate([0, 0, 45]) cube([20, 20, bearing_height + 1], center = true); } // // shelves // for(y = shelves) translate([-bearing_depth + shelf_depth / 2 + eta, 0, y]) cube([shelf_depth, bearing_width, shelf_thickness], center = true); } } //z_linear_bearings(); wall = thick_wall; // 4mm on Mendel and Sturdy, 3mm on Huxley web = 3; corner_rad = 3; clamp_wall = 0.5 + washer_diameter(M3_washer) / 2 + M3_clearance_radius; width = x_bar_spacing() + X_bar_dia + 2 * clamp_wall; back = -ceil(z_bar_offset() + Z_nut_radius + wall); front = -(Z_bar_dia / 2 + 1); length = front - back; thickness = X_bar_dia + 2 * wall; clamp_hole_inset = clamp_wall; clamp_height = thickness / 2 - 0.4; clamp_width = X_bar_dia + 2 * clamp_wall; nut_flat_radius = nut_radius * cos(30); bar_y = x_bar_spacing() / 2; belt_edge = -x_carriage_width() / 2 - X_carriage_clearance; function x_belt_offset() = belt_edge - belt_width(X_belt) / 2; idler_stack = 2 * ball_bearing_width(BB624) + 2 * (washer_thickness(M4_washer) + washer_thickness(M5_penny_washer)); idler_front = min(belt_edge - belt_width(X_belt) / 2 + idler_stack / 2, -bar_y - X_bar_dia / 2 - clamp_wall); idler_screw_length = 45; idler_depth = idler_screw_length - idler_stack - 1; idler_back = idler_front + idler_depth; idler_min_offset = max(M4_nut_radius + 0.5, 4 / 2 + wall); idler_max_offset = M4_nut_radius + wall; idler_width = ceil((squeeze ? idler_min_offset : idler_max_offset) + M4_nut_radius + wall); idler_offset = squeeze ? idler_min_offset : idler_width / 2; motor_washers = X_motor == NEMA14 ? 5 : 3; mbracket_thickness = 4; motor_angle = 45; motor_w = ceil(min(max(sin(motor_angle) + cos(motor_angle)) * NEMA_width(X_motor), NEMA_radius(X_motor) * 2) + 1); mbracket_width = motor_w + 2 * mbracket_thickness; mbracket_height = thickness / 2 + NEMA_radius(X_motor) + mbracket_thickness + 0.5; mbracket_front = belt_edge + 14; mbracket_depth = NEMA_length(X_motor) + motor_washers * washer_thickness(M3_washer) + 2 * mbracket_thickness; mbracket_centre = mbracket_front + mbracket_depth / 2 - mbracket_thickness; nut_shelf = bearing_height -thickness / 2 - wall - nut_trap_depth(Z_nut); switch_op_x = Z_bearings[1] / 2 + 3; // switch operates 2mm before carriage hits the bearing switch_op_z = x_carriage_offset() - 2; // hit the edge of the carriage sbracket_top = switch_op_z + 12; sbracket_height = sbracket_top + thickness / 2; sbracket_depth = switch_op_x - 3 - front; sbracket_thickness = bar_y - bearing_width / 2 - (squeeze ? 0 : (X_bar_dia / 2) * sin(45) + 1.5) - microswitch_thickness(); sbracket_y = -bearing_width / 2 - 1 - sbracket_thickness / 2; function x_motor_offset() = back - mbracket_thickness - motor_w / 2; function x_motor_overhang() = back - mbracket_width + (squeeze ? mbracket_thickness : 0); function x_idler_offset() = back - idler_offset; function x_idler_overhang() = x_idler_offset() - washer_diameter(M5_penny_washer) / 2; function x_end_bar_length() = -back; function x_end_height() = bearing_height - thickness / 2; function x_end_thickness() = thickness; function x_motor_height() = mbracket_height - thickness / 2; function x_end_clearance() = switch_op_x; function x_end_z_nut_z() = nut_shelf; function x_end_length() = length; ribbon_screw = M3_cap_screw; ribbon_nut = screw_nut(ribbon_screw); ribbon_nut_trap_depth = nut_trap_depth(ribbon_nut); ribbon_pillar_thickness = wall + ribbon_nut_trap_depth; ribbon_pillar_depth = ribbon_pillar_thickness; ribbon_pillar_width = nut_radius(ribbon_nut) * 2 + 2 * web + 0.5; ribbon_pillar_height = ribbon_clamp_length(extruder_ways, ribbon_screw); ribbon_clamp_x = back - mbracket_thickness + eta; ribbon_clamp_y = -bearing_width / 2 - ribbon_pillar_width / 2 + web - eta; ribbon_clamp_z = max(mbracket_height + ribbon_pillar_height / 2 - thickness / 2, bearing_height - ribbon_clamp_length(extruder_ways, ribbon_screw) / 2 - thickness / 2); ribbon_pillar_top = ribbon_clamp_z + ribbon_pillar_height / 2; function x_end_ribbon_clamp_y() = mbracket_front + NEMA_length(X_motor) + ribbon_bracket_thickness(); function x_end_ribbon_clamp_z() = NEMA_hole_pitch(X_motor) / sqrt(2); function x_end_extruder_ribbon_clamp_offset() = [-ribbon_clamp_x, ribbon_clamp_y + ribbon_clamp_width(ribbon_screw) / 2, ribbon_clamp_z]; module x_end_clamp_stl() { stl("x_end_clamp"); difference() { hull() { for(end = [-1, 1], side = [-1,1]) translate([end * (length / 2 - corner_rad), side * (clamp_width / 2 - corner_rad), 0]) if(side < 0) translate([0, 0, clamp_height / 2]) cube([2 * corner_rad, 2 * corner_rad, clamp_height], center = true); else cylinder(r = corner_rad, h = clamp_height); } translate([0, 0, thickness / 2]) rotate([90, 0, 90]) teardrop_plus(r = X_bar_dia / 2, h = length + 1, center = true); for(end = [-1, 1]) { for(side = [-1,1]) translate([end * (length / 2 - clamp_hole_inset), side * (X_bar_dia / 2 + M3_clearance_radius), 0]) poly_cylinder(r = M3_clearance_radius, h = 100, center = true); translate([end * (length / 2 - clamp_hole_inset), 0, thickness / 2]) cube([M3_clearance_radius * 2 - eta, X_bar_dia + M3_clearance_radius * 2, X_bar_dia * 0.8], center = true); } } } function ribbon_bracket_counterbore() = squeeze ? round_to_layer(screw_head_height(M3_cap_screw)) : washer_thickness(M3_washer) + screw_head_height(M3_cap_screw) + 0.5; function ribbon_bracket_thickness() = ribbon_bracket_counterbore() + (squeeze ? 1.6 : 2.4); module x_motor_ribbon_bracket_stl(support = true) { stl("x_motor_ribbon_bracket"); length = ribbon_clamp_length(x_end_ways, ribbon_screw) + 2; rad = ribbon_clamp_width(ribbon_screw) / 2 + 1; counterbore = ribbon_bracket_counterbore(); height = ribbon_bracket_thickness(); ridge_width = 5 * filament_width + eta; // angled same as infill so make sure whole number of filaments ridge_offset = (NEMA_width(X_motor) - NEMA_hole_pitch(X_motor)) / 2 + ridge_width / 2; ridge_height = 5; difference() { union() { hull() { for(side = [-1, 1]) translate([side * (length / 2 - rad), 0, 0]) cylinder(h = height, r = rad); } for(side = [-1,1]) intersection() { rotate([0, 0, side * 45]) translate([ridge_offset * side, 0, height - 1 + ridge_height / 2]) cube([ridge_width, 100, ridge_height + 1], center = true); cube([length, rad * 2 - 1, 100], center = true); } } // // counterbored hole for motor screw // difference() { union() { poly_cylinder(r = M3_clearance_radius, h = 100, center = true); poly_cylinder(r = (squeeze ? screw_head_radius(M3_cap_screw) : washer_diameter(M3_washer) / 2) + 0.5, h = counterbore * 2, center = true); } if(support) if(squeeze) translate([0, 0, counterbore]) cylinder(r = 10, h = layer_height); else hole_support(M3_clearance_radius, counterbore); } // // ribbon clamp holes // translate([0, 0, squeeze ? height * 2 : height]) ribbon_clamp_holes(x_end_ways, ribbon_screw) nut_trap(screw_clearance_radius(ribbon_screw), nut_radius(ribbon_nut), ribbon_nut_trap_depth); } } nut_trap_support_height = 10; module x_idler_support_stl() { hole_r = (Z_screw_dia + 1) / 2; outer_r = corrected_radius(hole_r) + 2 * filament_width; max_r = corrected_radius((Z_screw_dia + 1) / 2); color("grey") { translate([-z_bar_offset(), 0, 0]) hole_support(r = hole_r, h = bearing_height - wall, max_r = outer_r, closed = true, capped = true); translate([-z_bar_offset(), 0, nut_shelf + thickness / 2]) difference() { hull() { nut_trap_support(r = Z_nut_radius, h = eta); translate([0, 0, - nut_trap_support_height]) cylinder(r = outer_r - filament_width / 4 - eta, h = eta, $fn = sides(hole_r)); } difference() { hull() { nut_trap_support(r = Z_nut_radius - 2 * filament_width, h = 2 * eta); translate([0, 0, - nut_trap_support_height - eta]) cylinder(r = outer_r - 2 * filament_width - filament_width / 4 - eta, h = eta, $fn = sides(hole_r)); } translate([0, 0, -4 * layer_height]) cylinder(r = Z_nut_radius + 1, h = 3 * layer_height); } } for(side = [-1,1]) for(x = [front - clamp_hole_inset, back + clamp_hole_inset]) for(i = [-1,1]) translate([x, side * bar_y + i * (X_bar_dia / 2 + M3_clearance_radius), 0]) hole_support(r = M3_clearance_radius, h = M3_nut_trap_depth + eta, max_r = nut_flat_radius(M3_nut)); } } module x_motor_support_stl() mirror([1,0,0]) x_idler_support_stl(); module x_end_bracket(motor_end, integral_support = false){ // Slope the front of the motor bracket to clear the screws and the motor boss if possible slope_x = sqrt(2) * min(NEMA_big_hole(X_motor), NEMA_hole_pitch(X_motor) / 2 - washer_diameter(M3_washer) / 2 - 0.8); if(motor_end) stl("x_motor_bracket"); else stl("x_idler_bracket"); union(){ translate([0, 0, - thickness / 2]) z_linear_bearings(motor_end); difference(){ union(){ // base translate([front - length / 2, 0, 0]) rounded_rectangle([length, width, thickness], corner_rad); // nut holder tower difference() { translate([front - length / 2, 0, bearing_height / 2 - thickness / 2]) cube([length, bearing_width, bearing_height], true); translate([-bearing_depth - length / 2 - eta, 0, nut_shelf - bearing_height / 2]) rounded_rectangle([length, bearing_width - 2 * web, bearing_height], 2); } if(motor_end) // // limit switch bracket // difference() { union() { translate([front - eta, sbracket_y, - thickness / 2]) rotate([90, 0, 0]) linear_extrude(height = sbracket_thickness, center = true) polygon([ [0, 0], [sbracket_depth, sbracket_height - microswitch_length() + 2], [sbracket_depth, sbracket_height], [-web, sbracket_height], [-web, thickness - eta] ]); translate([front - web, sbracket_y, thickness / 2 - 1]) cube([web, -bearing_width / 2 - sbracket_y + 1, sbracket_height - thickness + 1]); } translate([switch_op_x, sbracket_y + sbracket_thickness / 2 + microswitch_thickness() / 2, switch_op_z]) rotate([0, -90, -90]) microswitch_holes(h = sbracket_thickness); } else { // // idler end // difference() { screw_angle = atan2(M4_clearance_radius - 3.9 / 2, idler_depth); union() { translate([back - idler_width / 2 + eta + corner_rad, idler_back - idler_depth / 2, 0]) rounded_rectangle([idler_width + 2 * corner_rad, idler_depth, thickness], r = corner_rad, center = true); translate([back, idler_back, 0]) rotate([0, 0, 90]) fillet(h = thickness, r = idler_width / 2); } translate([back - idler_width / 2, -bar_y, 0]) rotate([90, 0, 90]) teardrop(r = X_bar_dia / 2 + 0.5, h = 100, center = true); translate([x_idler_offset(), idler_back, 0]) rotate([90, 0, -screw_angle]) nut_trap(M4_clearance_radius, M4_nut_radius, M4_nut_trap_depth); } } } // // Cut out for bearing holder // translate([0, 0, bearing_height / 2 - thickness / 2]) cube([bearing_depth * 2 -eta, bearing_width - 1, bearing_height + 2], center = true); // // Hole for z leadscrew // difference() { translate([-z_bar_offset(), 0, - thickness / 2]) nut_trap((Z_screw_dia + 1) / 2, Z_nut_radius, nut_shelf + thickness / 2 + nut_trap_depth(Z_nut), supported = integral_support); if(integral_support) translate([-z_bar_offset(), 0, nut_shelf]) cylinder(r = Z_nut_radius + 1, h = 2 * layer_height, center = true); } translate([-z_bar_offset(), 0, -thickness / 2 - 1]) cylinder(r = Z_nut_radius + 1, h = thickness + 2, $fn = 6); for(side = [-1, 1]) { // // Holes for x_bars // translate([front - length / 2, bar_y * side, 0]) { rotate([90, 0, 90]) teardrop_plus(r = X_bar_dia / 2, h = length + 1, center = true); } // // Remove clamp tops // translate([back + (length + 1) / 2 - 0.5, side * (bar_y - X_bar_dia / 2 - clamp_wall - 0.5 + 50), bearing_height / 2]) cube([length + 1, 100, bearing_height], center = true); // // Clamp nut traps // for(x = [front - clamp_hole_inset, back + clamp_hole_inset]) { for(i = [-1,1]) translate([x, side * bar_y + i * (X_bar_dia / 2 + M3_clearance_radius), -thickness / 2]) nut_trap(M3_clearance_radius, M3_nut_radius, M3_nut_trap_depth, supported = integral_support); translate([x, side * bar_y, 0]) cube([M3_clearance_radius * 2 - eta, X_bar_dia + M3_clearance_radius * 2, X_bar_dia * 0.8], center = true); } } } if(motor_end) { difference() { union() { // // Motor bracket // translate([back - mbracket_width / 2 + eta, mbracket_centre, mbracket_height / 2 - thickness / 2]) { difference() { cube([mbracket_width, mbracket_depth, mbracket_height], center = true); // outside translate([0, 0, -mbracket_thickness]) cube([mbracket_width - 2 * mbracket_thickness, // inside mbracket_depth - 2 * mbracket_thickness, mbracket_height], center = true); translate([-M3_clearance_radius - wall - 100, -50, - 50]) // truncate front cube(100); difference() { union() { translate([slope_x, 0, -mbracket_height / 2 + thickness / 2]) rotate([0, 45, 180]) // slope front tangential to motor boss translate([0, 0, -50]) cube(100); // // big hole for motor boss // if(slope_x < sqrt(2) * NEMA_big_hole(X_motor)) translate([0, -mbracket_depth / 2, -50 / 2 - mbracket_height / 2 + thickness / 2]) rotate([90,0,0]) vertical_tearslot(r = NEMA_big_hole(X_motor), h = 2 * mbracket_thickness + 1, l = 50, center = true); } if(slope_x < sqrt(2) * NEMA_big_hole(X_motor) && integral_support) translate([slope_x - NEMA_big_hole(X_motor), -mbracket_depth / 2, - mbracket_height / 2 - 1]) union() { cube([8,8,4], true); cube([filament_width * 2, mbracket_thickness + eta, mbracket_height]); } } translate([-100 - NEMA_holes(X_motor)[0] * sqrt(2) - screw_head_radius(M3_cap_screw) - wall, 0, - 50]) cube(100); // truncate back translate([-100 + mbracket_width / 2 + 1, -mbracket_centre - bearing_width / 2 + web, -mbracket_height / 2 + thickness - eta]) cube(100); // truncate back translate([-M3_clearance_radius - wall - eta, -mbracket_centre - bearing_width / 2 + web + eta, mbracket_height / 2]) rotate([0, 0,-90]) right_triangle(width = -mbracket_front - bearing_width / 2 + web, height = mbracket_width / 2 -mbracket_thickness + M3_clearance_radius + wall, h = 2 * mbracket_thickness + 1); } } // // Ribbon clamp pillar // translate([ribbon_clamp_x + ribbon_pillar_thickness / 2, ribbon_clamp_y, ribbon_clamp_z - eta]) hull() { cube([ribbon_pillar_thickness, ribbon_pillar_width, ribbon_pillar_height], center = true); translate([+ribbon_pillar_thickness / 2 + 0.5 - mbracket_thickness + eta, 0, -(ribbon_pillar_thickness - mbracket_thickness) * 2]) cube([1, ribbon_pillar_width / 2, ribbon_pillar_height], center = true); } } // // Holes // translate([x_motor_offset(), 0, 0]) { // // Mounting holes // screw_offset = M3_clearance_radius - 2.9 / 2; for(x = NEMA_holes(X_motor)) // motor screw holes for(z = NEMA_holes(X_motor)) rotate([0, motor_angle, 0]) translate([x, 0, z]) rotate([90, -motor_angle, 0]) { translate([-screw_offset, 0, 0]) teardrop_plus(r = M3_clearance_radius, h = 100); // front holes translate([0, 0, -100]) teardrop_plus(r = screw_head_radius(M3_cap_screw), h = 100);// back hole } } translate([ribbon_clamp_x + ribbon_pillar_thickness, ribbon_clamp_y, ribbon_clamp_z]) rotate([-90,90,90]) ribbon_clamp_holes(extruder_ways, ribbon_screw) rotate([0, 0, 90]) nut_trap(screw_clearance_radius(ribbon_screw), nut_radius(ribbon_nut), ribbon_nut_trap_depth, true); // // Hole for switch wires // translate([back, -bearing_width / 2 - 4, thickness / 2 + 4]) rotate([90, 0, 90]) teardrop(r = 3, h = 2 * mbracket_thickness + 1, center = true); } } } } module washer_stack(washer, n) if(n == 1) washer(washer) children(); else washer(washer) washer_stack(washer, n - 1) children(); module x_end_assembly(motor_end) { motor_rear_screw = screw_shorter_than(NEMA_length(X_motor) + mbracket_thickness + (motor_washers + 2) * washer_thickness(M3_washer) - 8); shift = exploded ? 2 : 0; if(!motor_end) assembly("x_idler_assembly"); // // RP bits // color(x_end_bracket_color) render() x_end_bracket(motor_end); for(side = [-1, 1]) translate([(front + back) / 2, side * bar_y, thickness / 2]) rotate([180, 0, 90 + 90 * side]) color("red") render() x_end_clamp_stl(); // // bearings // for(i = [0,2]) translate([0, 0, (shelves[i] + shelves[i+1])/2 - thickness / 2]) rotate([0,90,0]) linear_bearing(Z_bearings); // // bearing clamp fasteners // for(side = [-1, 1]) for(x = [front - clamp_hole_inset, back + clamp_hole_inset]) for(i = [-1,1]) translate([x, side * bar_y + i * (X_bar_dia / 2 + M3_clearance_radius), 0]) { translate([0, 0, - thickness / 2 + M3_nut_trap_depth]) rotate([180, 0, 0]) nut(M3_nut, true); translate([0, 0, thickness / 2]) washer(M3_washer) screw(M3_cap_screw, screw_longer_than(thickness + washer_thickness(M3_washer) + nut_thickness(M3_nut, true) - nut_trap_depth(M3_nut))); } if(motor_end) { translate([x_motor_offset(), mbracket_front + eta, 0]) { rotate([90, motor_angle - 90, 0]) { NEMA(X_motor); translate([0,0, mbracket_thickness]) rotate([0, 0, -90]) NEMA_screws(X_motor, 2); rotate([0, 0, -180]) translate(NEMA_holes(X_motor)) translate([0, 0, -NEMA_length(X_motor)]) rotate([180, 0, 0]) washer_stack(M3_washer, motor_washers) screw(M3_cap_screw, motor_rear_screw); translate([0, 0, 5]) pulley_assembly(); // // Heatshrink for motor connections // for(i = [-1.5 : 1.5]) translate([i * 5, NEMA_width(X_motor) / 2 + 2, -NEMA_length(X_motor) / 2]) tubing(HSHRNK24); } } translate([switch_op_x, sbracket_y - sbracket_thickness / 2 - microswitch_thickness() / 2, switch_op_z]) rotate([0, -90, -90]) { microswitch(); microswitch_hole_positions() translate([0,0, -(microswitch_thickness())]) rotate([180,0,0]) screw_and_washer(No2_screw, 13); } // // ribbon clamps // translate([x_motor_offset(), x_end_ribbon_clamp_y(), x_end_ribbon_clamp_z()]) { rotate([90, 0, 0]) { color(x_end_bracket_color) render() x_motor_ribbon_bracket_stl(false); translate([0, 0, ribbon_bracket_counterbore() - exploded * 7]) rotate([180, 0, 0]) if(squeeze) screw(M3_cap_screw, motor_rear_screw); else screw_and_washer(M3_cap_screw, motor_rear_screw); } explode([0, 8, 0]) rotate([-90, 0, 0]) if(!squeeze) ribbon_clamp_assembly(x_end_ways, M3_cap_screw, 16, ribbon_bracket_thickness() - M3_nut_trap_depth); else ribbon_clamp_assembly(x_end_ways, M3_hex_screw, 16, ribbon_bracket_thickness(), hex = true, washer = true); } translate([ribbon_clamp_x, ribbon_clamp_y, ribbon_clamp_z]) rotate([-90, 90, 90]) ribbon_clamp_assembly(extruder_ways, ribbon_screw, 16, wall, true); } else { translate([x_idler_offset(), idler_front - idler_stack / 2 - shift * 4, 0]) { for(i = [-1, 1]) { translate([0, (ball_bearing_width(X_idler_bearing) / 2 + shift) * i, 0]) rotate([90, 0, 0]) ball_bearing(BB624); translate([0, (ball_bearing_width(X_idler_bearing) + shift * 2) * i, 0]) rotate([-i * 90, 0, 0]) washer(M4_washer); translate([0, ((ball_bearing_width(X_idler_bearing) + washer_thickness(M4_washer)) + shift * 3) * i, 0]) rotate([-i * 90, 0, 0]) washer(M5_penny_washer); } translate([0,-ball_bearing_width(X_idler_bearing) - washer_thickness(M4_washer) - washer_thickness(M5_penny_washer),0]) rotate([90,0,0]) screw(M4_cap_screw, idler_screw_length); } translate([x_idler_offset(), idler_back - M4_nut_trap_depth, 0]) rotate([-90, 0, 0]) nut(M4_nut, true); } if(!motor_end) end("x_idler_assembly"); } module x_motor_bracket_stl(integral_support = true) translate([0, 0, thickness / 2]) mirror ([1,0,0]) x_end_bracket(true, integral_support); module x_idler_bracket_stl(integral_support = true) translate([0, 0, thickness / 2]) x_end_bracket(false, integral_support); module x_ends_stl() { x_motor_bracket_stl(); translate([-bearing_width / 4, bearing_width / 2, 0]) x_idler_bracket_stl(); } module facing_pair(dir = 1) { children(); translate([-dir * bearing_width / 4, dir * bearing_width / 2, 0]) rotate([0, 0, 180]) children(); } module x_motor_bracket_x2_stl() facing_pair() x_motor_bracket_stl(false); module x_motor_support_x2_stl() facing_pair() x_motor_support_stl(); module x_idler_bracket_x2_stl() facing_pair(-1) x_idler_bracket_stl(false); module x_idler_support_x2_stl() facing_pair(-1) x_idler_support_stl(); if(0) x_ends_stl(); else if(0) x_end_assembly(false); else mirror ([1,0,0]) x_end_assembly(true); //!x_motor_bracket_stl(); //!x_motor_ribbon_bracket_stl();