1
0
mirror of https://github.com/nophead/NopSCADlib.git synced 2025-08-22 15:13:15 +02:00

Removed the belt gap options and changed the tests to use open loops instead.

Note previous belt lengths were incorrect with negative turns.
Fixed spelling typos.
_belt_length() no longer needs belt type.
Uptated images and readme.
This commit is contained in:
Chris Palmer
2021-03-14 18:53:37 +00:00
parent 42e03679b4
commit 9ded315801
11 changed files with 123 additions and 94 deletions

View File

@@ -51,15 +51,20 @@ function coreXY_lower_tooth_colour(type) = type[8]; //! Colour of the lower b
// relative to the anchor pulley so that the belts align properly
function coreXY_drive_pulley_x_alignment(type) = //! Belt alignment offset of the drive pulley relative to the anchor pulley
(pulley_od(coreXY_drive_pulley(type)) - pulley_od(coreXY_toothed_idler(type))) / 2;
function coreXY_coincident_separation(type) = //! Value of x, y separation to make y-carriage pulleys coincident
[ -coreXY_plain_idler_offset(type).x, -(pulley_od(coreXY_plain_idler(type)) + pulley_od(coreXY_toothed_idler(type)))/2, 0 ];
function coreXY_plain_idler_offset(type) = //! Offset of y-carriage plain idler
[ (pulley_od(coreXY_plain_idler(type)) + pulley_od(coreXY_drive_pulley(type))) / 2 + coreXY_drive_pulley_x_alignment(type), pulley_od(coreXY_plain_idler(type))/2, 0 ];
function coreXY_toothed_idler_offset(type) = //! offset of y-carriage toothed idler
[ 0, -pulley_pr(coreXY_toothed_idler(type)), 0 ];
// helper functions for positioning idlers when the stepper motor drive pulley is offset
function coreXY_drive_toothed_idler_offset(type) = //! Offset of toothed drive idler pulley
[ 0, coreXY_drive_pulley_x_alignment(type), 0 ];
function coreXY_drive_plain_idler_offset(type) = //! Offset of plain drive idler pulley
[ coreXY_plain_idler_offset(type).x, -(pulley_od(coreXY_plain_idler(type)) + pulley_od(coreXY_drive_pulley(type))) / 2, 0 ];
@@ -86,7 +91,7 @@ module coreXY_half(type, size, pos, separation_y = 0, x_gap = 0, plain_idler_off
// toothed idler for offset stepper motor drive pulley
p3t_type = coreXY_toothed_idler(type);
p3t = [ -size.x / 2 + (drive_pulley_offset.x > 0 ? 0 : 2*coreXY_drive_pulley_x_alignment(type)),
p3t = [ -size.x / 2 + (drive_pulley_offset.x > 0 ? 0 : 2 * coreXY_drive_pulley_x_alignment(type)),
size.y / 2 + coreXY_drive_pulley_x_alignment(type) + drive_pulley_offset.y
];
@@ -102,11 +107,11 @@ module coreXY_half(type, size, pos, separation_y = 0, x_gap = 0, plain_idler_off
size.y / 2 - pulley_od(p3p_type) / 2 - pulley_od(p3d_type) / 2 + drive_pulley_offset.y
];
// dummy pulleys for y separation
p5_type = p4_type;
p5 = [ pos.x - size.x / 2, -size.y / 2 + pos.y + separation_y / 2 ];
p6_type = p0_type;
p6 = [ pos.x - size.x / 2, -size.y / 2 + pos.y - separation_y / 2 ];
// Start and end points
start_p = [ pos.x - size.x / 2 + x_gap / 2, -size.y / 2 + pos.y - separation_y / 2, 0 ];
end_p = [ pos.x - size.x / 2 - x_gap / 2, -size.y / 2 + pos.y + separation_y / 2, 0 ];
//p6_type = p0_type;
module show_pulleys(show_pulleys) {// Allows the pulley colour to be set for debugging
if (is_list(show_pulleys))
@@ -119,16 +124,21 @@ module coreXY_half(type, size, pos, separation_y = 0, x_gap = 0, plain_idler_off
show_pulleys(show_pulleys) {
translate(p0)
pulley_assembly(p0_type); // y-carriage toothed pulley
translate(p1)
pulley_assembly(p1_type); // bottom right toothed idler pulley
translate(p2)
pulley_assembly(p2_type); // bottom left anchor toothed idler pulley
translate(p3d)
hflip(hflip)
pulley_assembly(p3d_type); // top left stepper motor drive pulley
if (drive_pulley_offset.x) { // idler pulleys for offset stepper motor drive pulley
translate(p3t)
pulley_assembly(p3t_type); // toothed idler
translate(p3p)
pulley_assembly(p3p_type); // plain idler
}
@@ -157,20 +167,15 @@ module coreXY_half(type, size, pos, separation_y = 0, x_gap = 0, plain_idler_off
[ p3t.x, p3t.y, pulley_od(p3t_type) / 2 ],
[ p4.x, p4.y, -pulley_od(p4_type) / 2 ]
];
path1 = [ // use eps for corner radius to get sharp corners so this part of the belt is deleted by the gap
[ p5.x, p5.y, eps ],
[ p6.x, p6.y, eps ]
];
belt = coreXY_belt(type);
path0 = drive_pulley_offset.x == 0 ? concat(path0a, path0b) : drive_pulley_offset.x > 0 ? concat(path0a, path0c) : concat(path0a, path0d);
path = separation_y == 0 ? path0 : concat(path0, path1);
path = concat([start_p], path0, [end_p]);
belt(type = belt,
points = path,
gap = [ x_gap + eps, abs(separation_y) + 2 ],
gap_pos = [ pos.x - size.x / 2, pos.y - size.y / 2 + belt_pitch_height(belt) - belt_thickness(belt) / 2 ],
open = true,
belt_colour = lower_belt ? coreXY_lower_belt_colour(type) : coreXY_upper_belt_colour(type),
tooth_colour = lower_belt ? coreXY_lower_tooth_colour(type) : coreXY_upper_tooth_colour(type));
}
@@ -181,6 +186,7 @@ module coreXY(type, size, pos, separation, x_gap, plain_idler_offset = 0, upper_
hflip()
explode(25)
coreXY_half(type, size, [size.x - pos.x - separation.x, pos.y], separation.y, x_gap, plain_idler_offset, [-lower_drive_pulley_offset.x, lower_drive_pulley_offset.y], show_pulleys, lower_belt = true, hflip = true);
// upper belt
translate([separation.x, 0, separation.z])
explode(25)

View File

@@ -157,7 +157,7 @@ function circle_intersect(c1, r1, c2, r2) = //! Calculate one point where tw
function map(v, func) = [ for (e = v) func(e) ]; //! make a new vector where the func function argument is applied to each element of the vector v
function mapi(v, func) = [ for (i = [0:len(v)-1]) func(i,v[i]) ]; //! make a new vector where the func function argument is applied to each element of the vector v. The func will get the index number as first argument, and the element as second argument.
function reduce(v, func, unity) = let ( r = function(i,val) i == len(v) ? val : r(i + 1, func(val, v[i])) ) r(0, unity); //! reduce a vector v to a single entity by applying the func function recursivly to the reduced value so far and the next element, starting with unity as the inital reduced value
function reduce(v, func, unity) = let ( r = function(i,val) i == len(v) ? val : r(i + 1, func(val, v[i])) ) r(0, unity); //! reduce a vector v to a single entity by applying the func function recursively to the reduced value so far and the next element, starting with unity as the initial reduced value
function sumv(v) = reduce(v, function(a, b) a + b, 0); //! sum a vector of values that can be added with "+"
function xor(a,b) = (a && !b) || (!a && b);
function xor(a,b) = (a && !b) || (!a && b);

View File

@@ -37,7 +37,7 @@ function circle_tangent(p1, p2) = //! Compute the clockwise tangent between two
v = [cos(theta), sin(theta)]
)[ p1 + r1 * v, p2 + r2 * v ];
function rounded_polygon_arcs(points, tangents) = //! Compute the arcs at the points, for each point [angle,rotate_angle,length]
function rounded_polygon_arcs(points, tangents) = //! Compute the arcs at the points, for each point [angle, rotate_angle, length]
let(
len = len(points)
) [ for (i = [0: len-1])
@@ -49,12 +49,12 @@ function rounded_polygon_arcs(points, tangents) = //! Compute the arcs at the po
v2 = p2 - p,
sr = points[i][2],
r = abs(sr),
a = r < 0.001 ? 0 : let( aa = acos((v1 * v2) / sqr(r)) ) cross(v1, v2)*sign(sr) <= 0 ? aa : 360 - aa,
a = r < 0.001 ? 0 : let( aa = acos((v1 * v2) / sqr(r)) ) cross(v1, v2) * sign(sr) <= 0 ? aa : 360 - aa,
l = PI * a * r / 180,
v0 = [r, 0],
v = let (
vv = norm(v0-v2) < 0.001 ? 0 : abs(v2.y) < 0.001 ? 180 :
let( aa = acos((v0 * v2) / sqr(r)) ) cross(v0, v2)*sign(sr) <= 0 ? aa : 360 - aa
vv = norm(v0 - v2) < 0.001 ? 0 : abs(v2.y) < 0.001 ? 180 :
let( aa = acos((v0 * v2) / sqr(r)) ) cross(v0, v2) * sign(sr) <= 0 ? aa : 360 - aa
) sr > 0 ? 360 - vv : vv - a
) [a, v, l]
];
@@ -84,6 +84,7 @@ module rounded_polygon(points, _tangents = undef) { //! Draw the rounded polygon
hull() {
translate([points[i].x, points[i].y])
circle(points[i][2]);
polygon([tangents[(2 * i - 1 + 2 * len) % (2 * len)], tangents[2 * i], [points[i].x, points[i].y]]);
}
@@ -95,7 +96,7 @@ module rounded_polygon(points, _tangents = undef) { //! Draw the rounded polygon
translate([points[i].x, points[i].y])
circle(-points[i][2]);
polygon([tangents[(2 * i - 1 + 2 * len) % (2 *len)], tangents[2 * i], [points[i].x, points[i].y]]);
polygon([tangents[(2 * i - 1 + 2 * len) % (2 * len)], tangents[2 * i], [points[i].x, points[i].y]]);
}
}
}