mirror of
https://github.com/nophead/NopSCADlib.git
synced 2025-08-11 01:44:01 +02:00
Added cubic splines and Catmull Rom splines.
This commit is contained in:
101
utils/splines.scad
Normal file
101
utils/splines.scad
Normal file
@@ -0,0 +1,101 @@
|
||||
//
|
||||
// NopSCADlib Copyright Chris Palmer 2024
|
||||
// nop.head@gmail.com
|
||||
// hydraraptor.blogspot.com
|
||||
//
|
||||
// This file is part of NopSCADlib.
|
||||
//
|
||||
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
|
||||
// GNU General Public License as published by the Free Software Foundation, either version 3 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
||||
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
// See the GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with NopSCADlib.
|
||||
// If not, see <https://www.gnu.org/licenses/>.
|
||||
//
|
||||
|
||||
//
|
||||
//! Cubic splines that interpolate between a list of 2D points passing through all of them.
|
||||
//! Translated from the Python version at <https://community.alteryx.com/t5/Engine-Works/Creating-a-Cubic-Spline-in-Python-and-Alteryx/ba-p/581173>.
|
||||
//! Note the x values of the points must be strictly increasing.
|
||||
//!
|
||||
//! Catmull-Rom splines are well behaved but the ends points are control points and the curve only goes from the second point to the penultimate point.
|
||||
//! Coded from <https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline#Code_example_in_Python>.
|
||||
//! No restrictions on points and they can be 3D.
|
||||
//
|
||||
include <../utils/core/core.scad>
|
||||
|
||||
use <maths.scad>
|
||||
use <sweep.scad>
|
||||
|
||||
function cubic_spline(points, N = 100) = let( //! Interpolate the list of points given to produce N points on a cubic spline that passes through points given.
|
||||
N = N - 1,
|
||||
n = len(points),
|
||||
ass1 = assert(n >= 3, "must be at least 3 points")0,
|
||||
|
||||
dx = [for(i = [0 : n - 2]) points[i + 1].x - points[i].x], // x deltas
|
||||
ass2 = assert(min(dx) > 0, "X must strictly increase")0,
|
||||
|
||||
//
|
||||
// A and C are diagonals above and below the main diagonal B, which is all 2's
|
||||
//
|
||||
A = [for(i = [0 : n - 3]) dx[i] / (dx[i] + dx[i + 1]), 0],
|
||||
C = [0, for(i = [0 : n - 3]) dx[i + 1] / (dx[i] + dx[i + 1]), 0],
|
||||
//
|
||||
// D are the target values on the right hand side of the equation
|
||||
//
|
||||
D = [0, for(i = [1 : n - 2]) 6 * ((points[i + 1].y - points[i].y) / dx[i] - (points[i].y - points[i - 1].y) / dx[i - 1]) / (dx[i] + dx[i - 1]), 0],
|
||||
//
|
||||
// Solve the tridiagonal equation using the Thomas algorithm
|
||||
//
|
||||
c = [for(i = 1, c = 0; i < n; c = C[i] / (2 - c * A[i - 1]), i = i + 1) c, 0],
|
||||
d = [for(i = 1, d = 0; i < n; d = (D[i] - d * A[i - 1]) / (2 - c[i - 1] * A[i - 1]), i = i + 1) d, 0],
|
||||
M = [for(i = n - 2, x = 0; i >= 0; x = d[i] - c[i] * x, i = i - 1) x, 0],
|
||||
//
|
||||
// Calculate the coefficients of each cubic curve
|
||||
//
|
||||
coefficients = [for(i = [0 : n - 2], dx2 = sqr(dx[i]), j = n - 1 - i)
|
||||
[(M[j - 1] - M[j]) * dx2 / 6,
|
||||
M[j] * dx2 / 2,
|
||||
points[i + 1].y - points[i].y - (M[j - 1] + 2 * M[j]) * dx2 / 6,
|
||||
points[i].y]
|
||||
],
|
||||
//
|
||||
// Use the coefficients to interpolate between the points
|
||||
//
|
||||
x0 = points[0].x,
|
||||
x1 = points[n - 1].x,
|
||||
spline = [for(i = 0, j = 0, z = 0, x = x0; i <= N + 1;
|
||||
x = x0 + (x1 - x0) * i / N,
|
||||
j = i < N - 1 && x > points[j + 1].x ? j + 1 : j,
|
||||
z = (x - points[j].x) / dx[j],
|
||||
i = i + 1,
|
||||
C = coefficients[j]
|
||||
) if(i) [x, (((C[0] * z) + C[1]) * z + C[2]) * z + C[3]]
|
||||
]
|
||||
) spline;
|
||||
|
||||
function tj(ti, pi, pj, alpha = 0.5) = ti + pow(norm(pi - pj), alpha);
|
||||
|
||||
function catmull_rom_segment(P0, P1, P2, P3, n, alpha = 0.5, last = false) = let(
|
||||
t0 = 0,
|
||||
t1 = tj(t0, P0, P1, alpha),
|
||||
t2 = tj(t1, P1, P2, alpha),
|
||||
t3 = tj(t2, P2, P3, alpha),
|
||||
end = last ? n : n - 1,
|
||||
points = [for(i = [0 : end], t = t1 + (t2 - t1) * i / n) let(
|
||||
A1 = (t1 - t) / (t1 - t0) * P0 + (t - t0) / (t1 - t0) * P1,
|
||||
A2 = (t2 - t) / (t2 - t1) * P1 + (t - t1) / (t2 - t1) * P2,
|
||||
A3 = (t3 - t) / (t3 - t2) * P2 + (t - t2) / (t3 - t2) * P3,
|
||||
B1 = (t2 - t) / (t2 - t0) * A1 + (t - t0) / (t2 - t0) * A2,
|
||||
B2 = (t3 - t) / (t3 - t1) * A2 + (t - t1) / (t3 - t1) * A3
|
||||
) (t2 - t) / (t2 - t1) * B1 + (t - t1) / (t2 - t1) * B2],
|
||||
) points;
|
||||
|
||||
|
||||
function catmull_rom_spline(points, n, alpha = 0.5) = let( //! Interpolate n new points between the specified points with a Catmull-Rom spline, alpha = 0.5 for centripetal, 0 for uniform and 1 for chordal.
|
||||
segs = len(points) - 3
|
||||
) [for(i = [0 : segs - 1]) each catmull_rom_segment(points[i], points[i + 1], points[i + 2], points[i + 3], n, alpha, last = i == segs - 1)];
|
Reference in New Issue
Block a user