1
0
mirror of https://github.com/nophead/NopSCADlib.git synced 2025-08-09 08:56:29 +02:00

added dimensions

This commit is contained in:
Alex Verschoot
2025-03-02 20:18:17 +01:00
parent 0b8ad93dc5
commit dc683ed701
3 changed files with 267 additions and 0 deletions

157
utils/dimension.scad Normal file
View File

@@ -0,0 +1,157 @@
//
// NopSCADlib Copyright Chris Palmer 2018
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
//
//! Annotation used in this documentation
//
include <../utils/core/core.scad>
include <../utils/maths.scad>
//if text is empty, will display the number value
//text_plane is either "XY" or "XZ"
module dimension(startpoint, endpoint, text = "", thickness = 0.1) {
// Compute vector between points
direction = endpoint - startpoint;
length = norm(direction);
midpoint = (startpoint + endpoint) / 2;
// Ensure nonzero values for calculations
dir_xy = norm([direction.x, direction.y]);
// Compute rotation angles safely
//azimuth = (dir_xy == 0) ? 0 : atan2(direction.y, direction.x);
azimuth = atan2(direction.y, direction.x);
/*elevation = (direction.x == 0 && direction.y == 0)
? ((direction.z > 0) ? -90 : 90)
: -atan2(direction.z, dir_xy);*/
elevation = -atan2(direction.z, dir_xy);
// Draw measurement line as a thin cylinder
translate(midpoint)
rotate([0, elevation, azimuth])
rotate([0, 90, 0])
cylinder(d = thickness, h = length - thickness * 2, center = true);
// Draw endpoint markers
translate(startpoint)
rotate([0, elevation - 90, azimuth])
translate([0, 0, -thickness * 4])
cylinder(h = thickness * 4, r1 = thickness * 2, r2 = 0);
translate(endpoint)
rotate([0, elevation + 90, azimuth])
translate([0, 0, -thickness * 4])
cylinder(h = thickness * 4, r1 = thickness * 2, r2 = 0);
// Draw the text/distance
dir = (length > 0) ? (direction / length) * thickness * 4 : [1, 0, 0];
up_dir = rotate_vector_3d([0,1,0], [0,0,1] ,azimuth);
translate(midpoint + up_dir*0.66)
rotate([0, elevation, azimuth])
linear_extrude(thickness)
text(text == "" ? str(length) : text, size = thickness * 5, valign = "center", halign = "center");
}
//offset will detirmine how much space is between the measured point and the dimension
//for x, this offset will be in the y direction
module dimension_x(startpoint, endpoint, offset = 1, text = "", thickness = 0.1) {
y = max(startpoint.y, endpoint.y) + offset;
z = max(startpoint.z, endpoint.z) ;
dimension([startpoint.x, y, z], [endpoint.x, y, z], text, thickness);
v1= [startpoint.x, y, z]-startpoint;
h1 = norm(v1);
axis1 = cross([0,0,1], v1);
angle1 = atan2(norm(axis1), v1.z);
translate(startpoint)
rotate(angle1, axis1)
cylinder( h= h1+thickness*2, d=thickness);
v2= [endpoint.x, y, z]-endpoint;
h2 = norm(v2);
axis2 = cross([0,0,1], v2);
angle2 = atan2(norm(axis2), v2.z);
translate(endpoint)
rotate(angle2, axis2)
cylinder( h= h2+thickness*2, d=thickness);
}
//offset will detirmine how much space is between the measured point and the dimension
//for y, this offset will be in the x direction
module dimension_y(startpoint, endpoint, offset = 1, text = "", thickness = 0.1) {
x = max(startpoint.x, endpoint.x) + offset;
z = max(startpoint.z, endpoint.z) ;
dimension([x, startpoint.y, z], [x, endpoint.y, z], text, thickness);
v1= [x, startpoint.y, z]-startpoint;
h1 = norm(v1);
axis1 = cross([0,0,1], v1);
angle1 = atan2(norm(axis1), v1.z);
translate(startpoint)
rotate(angle1, axis1)
cylinder( h= h1+thickness*2, d=thickness);
v2= [x, endpoint.y, z]-endpoint;
h2 = norm(v2);
axis2 = cross([0,0,1], v2);
angle2 = atan2(norm(axis2), v2.z);
translate(endpoint)
rotate(angle2, axis2)
cylinder( h= h2+thickness*2, d=thickness);
}
//offset will detirmine how much space is between the measured point and the dimension
//for z, this offset will be in the x direction
module dimension_z(startpoint, endpoint, offset = 1, text = "", thickness = 0.1) {
x = max(startpoint.x, endpoint.x) + offset;
y = max(startpoint.y, endpoint.y) ;
dimension([x, y, startpoint.z], [x, y, endpoint.z], text, thickness);
v1= [x, y, startpoint.z]-startpoint;
h1 = norm(v1);
axis1 = cross([0,0,1], v1);
angle1 = atan2(norm(axis1), v1.z);
translate(startpoint)
rotate(angle1, axis1)
cylinder( h= h1+thickness*2, d=thickness);
v2= [x, y, endpoint.z]-endpoint;
h2 = norm(v2);
axis2 = cross([0,0,1], v2);
angle2 = atan2(norm(axis2), v2.z);
translate(endpoint)
rotate(angle2, axis2)
cylinder( h= h2+thickness*2, d=thickness);
}

View File

@@ -191,3 +191,32 @@ function cubic_real_roots(a, b, c, d) = //! Returns real roots of cubic equation
function path_length(path, i = 0, length = 0) = //! Calculated the length along a path
i >= len(path) - 1 ? length
: path_length(path, i + 1, length + norm(path[i + 1] - path[i]));
function rotate_vector_2d(v, angle) = [
v[0] * cos(angle) - v[1] * sin(angle),
v[0] * sin(angle) + v[1] * cos(angle)
];
function rotate_vector_2d(v, angle) = [
v[0] * cos(angle) - v[1] * sin(angle),
v[0] * sin(angle) + v[1] * cos(angle)
];
function rotation_matrix(axis, angle) = let(
u = axis / norm(axis), // Normalize axis
ux = u[0], uy = u[1], uz = u[2],
cosA = cos(angle), sinA = sin(angle),
one_minus_cosA = 1 - cosA
) [
[cosA + ux*ux*one_minus_cosA, ux*uy*one_minus_cosA - uz*sinA, ux*uz*one_minus_cosA + uy*sinA],
[uy*ux*one_minus_cosA + uz*sinA, cosA + uy*uy*one_minus_cosA, uy*uz*one_minus_cosA - ux*sinA],
[uz*ux*one_minus_cosA - uy*sinA, uz*uy*one_minus_cosA + ux*sinA, cosA + uz*uz*one_minus_cosA]
];
function rotate_vector_3d(v, axis, angle) = let(
mat = rotation_matrix(axis, angle)
) [
mat[0][0]*v[0] + mat[0][1]*v[1] + mat[0][2]*v[2],
mat[1][0]*v[0] + mat[1][1]*v[1] + mat[1][2]*v[2],
mat[2][0]*v[0] + mat[2][1]*v[1] + mat[2][2]*v[2]
];