// // NopSCADlib Copyright Chris Palmer 2018 // nop.head@gmail.com // hydraraptor.blogspot.com // // This file is part of NopSCADlib. // // NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the // GNU General Public License as published by the Free Software Foundation, either version 3 of // the License, or (at your option) any later version. // // NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; // without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU General Public License for more details. // // You should have received a copy of the GNU General Public License along with NopSCADlib. // If not, see . // // //! Utility to generate a polyhedron by sweeping a 2D profile along a 3D path and utilities for generating paths. //! //! The initial orientation is the Y axis of the profile points towards the initial center of curvature, Frenet-Serret style. //! Subsequent rotations use the minimum rotation method. //! //! The path can be open or closed. If closed sweep ensures that the start and end have the same rotation to line up. //! An additional twist around the path can be specified. If the path is closed this should be a multiple of 360. //! //! `rounded_path()` can be used to generate a path of lines connected by arcs, useful for wire runs, etc. //! The vertices specify where the the path would be without any rounding. //! Each vertex, apart from the first and the last, has an associated radius and the path shortcuts the vertex with an arc specified by the radius. //! //! `spiral_paths()` makes a list of new paths that spiral around a given path. It can be used to make twisted wires that follow a rounded_path, for example. // include <../utils/core/core.scad> use function transpose3(m) = [ [m[0].x, m[1].x, m[2].x], [m[0].y, m[1].y, m[2].y], [m[0].z, m[1].z, m[2].z] ]; // // Find the first non-colinear point // tiny = 0.00001; function find_curve(tangents, i = 1) = i >= len(tangents) - 1 || norm(cross(tangents[0], tangents[i] - tangents[0])) > tiny ? i : find_curve(tangents, i + 1); // // Frenet-Serret frame // function fs_frame(tangents) = let(tangent = tangents[0], i = find_curve(tangents), normal = tangents[i] - tangents[0], binormal = cross(tangent, normal), z = unit(tangent), x = assert(norm(binormal) > tiny, "all points are colinear") unit(binormal), y = unit(cross(z, x)) ) [[x.x, y.x, z.x], [x.y, y.y, z.y], [x.z, y.z, z.z]]; // // Computes the rotation with minimum angle that brings UNIT vectors a to b. // The code fails if a and b are opposed to each other. // function rotate_from_to(a, b) = let(axis = unit(cross(a, b))) axis * axis >= 0.99 ? transpose3([b, axis, cross(axis, b)]) * [a, axis, cross(axis, a)] : a * b > 0 ? [[ 1, 0, 0], [0, 1, 0], [0, 0, 1]] : [[-1, 0, 0], [0, 1, 0], [0, 0, -1]]; // // Given two rotations A and B, calculates the angle between B*[1,0,0] // and A*[1,0,0] that is, the total torsion angle difference between A and B. // function calculate_twist(A, B) = let(D = transpose3(B) * A) atan2(D[1][0], D[0][0]); // // Compute a 4x3 matrix to orientate a frame of the sweep given the position and a 3x3 rotation matrix. // Note that the rotation matrix is transposed to allow post multiplication. // function orientate(p, r) = let(x = r[0], y = r[1], z = r[2]) [[x.x, y.x, z.x], [x.y, y.y, z.y], [x.z, y.z, z.z], [p.x, p.y, p.z]]; // // Rotate around z // function rot3_z(a) = let(c = cos(a), s = sin(a)) [ [ c, -s, 0], [ s, c, 0], [ 0, 0, 1] ]; // // Calculate the unit tangent at a vertex given the indices before and after. One of these can be the same as i in the case // of the start and end of a non closed path. Note that the edges are converted to unit vectors so that their relative lengths // don't affect the direction of the tangent. // function tangent(path, before, i, after) = unit(unit(path[i] - path[before]) + unit(path[after] - path[i])); // // Calculate the twist per segment caused by rotate_from_to() instead of a simple Euler rotation around Z. // function helical_twist_per_segment(r, pitch, sides) = //! Calculate the twist around Z that rotate_from_to() introduces let(step_angle = 360 / sides, lt = 2 * r * sin(step_angle), // length of tangent between two facets slope = atan(2 * pitch / sides / lt) // slope of tangents ) step_angle * sin(slope); // angle tangent should rotate around z projected onto axis rotate_from_to() uses // // Generate all the transforms for the profile of the swept volume. // function sweep_transforms(path, loop = false, twist = 0, initial_rotation = undef) = let(len = len(path), last = len - 1, tangents = [tangent(path, loop ? last : 0, 0, 1), for(i = [1 : last - 1]) tangent(path, i - 1, i, i + 1), tangent(path, last - 1, last, loop ? 0 : last)], lengths = [for(i = 0, t = 0; i < len; t = t + norm(path[min(i + 1, last)] - path[i]), i = i + 1) t], length = lengths[last], rotations = [for(i = 0, rot = is_undef(initial_rotation) ? fs_frame(tangents) : rot3_z(initial_rotation); i < len; i = i + 1, rot = i < len ? rotate_from_to(tangents[i - 1], tangents[i]) * rot : undef) rot], mismatch = loop ? calculate_twist(rotations[0], rotations[last]) : 0, rotation = mismatch + twist ) [for(i = [0 : last]) let(za = rotation * lengths[i] / length) orientate(path[i], rotations[i] * rot3_z(za)) ]; // // Generate all the surface points of the swept volume. // function skin_points(profile, path, loop, twist = 0) = let(profile4 = [for(p = profile) [p.x, p.y, p.z, 1]], transforms = sweep_transforms(path, loop, twist) ) [for(t = transforms) each profile4 * t ]; function cap(facets, segment = 0, end) = //! Create the mesh for an end cap let(reverse = is_undef(end) ? segment : end) [for(i = [0 : facets - 1]) facets * segment + (reverse ? i : facets - 1 - i)]; function quad(p, a, b, c, d) = norm(p[a] - p[c]) > norm(p[b] - p[d]) ? [[b, c, d], [b, d, a]] : [[a, b, c], [a, c, d]]; function skin_faces(points, npoints, facets, loop, offset = 0) = //! Create the mesh for the swept volume without end caps [for(i = [0 : facets - 1], s = [0 : npoints - (loop ? 1 : 2)]) let(j = s + offset, k = loop ? (j + 1) % npoints : j + 1) each quad(points, j * facets + i, j * facets + (i + 1) % facets, k * facets + (i + 1) % facets, k * facets + i)]; function sweep(path, profile, loop = false, twist = 0) = //! Generate the point list and face list of the swept volume let( npoints = len(path), facets = len(profile), points = skin_points(profile, path, loop, twist), skin_faces = skin_faces(points, npoints, facets, loop), faces = loop ? skin_faces : concat([cap(facets)], skin_faces, [cap(facets, npoints - 1)]) ) [points, faces]; module sweep(path, profile, loop = false, twist = 0, convexity = 1) { //! Draw a polyhedron that is the swept volume mesh = sweep(path, profile, loop, twist); polyhedron(points = mesh[0], faces = mesh[1], convexity = convexity); } function circle_points(r = 1, z = 0, dir = -1) = //! Generate the points of a circle, setting z makes a single turn spiral let(sides = r2sides(r)) [for(i = [0 : sides - 1]) let(a = dir * i * 360 / sides) [r * cos(a), r * sin(a), z * i / sides]]; function rectangle_points(w, h) = [[-w/2, -h/2, 0], [-w/2, h/2, 0], [w/2, h/2, 0], [w/2, -h/2, 0]]; //! Generate the points of a rectangle function arc_points(r, a = [90, 0, 180], al = 90) = //! Generate the points of a circular arc let(sides = ceil(r2sides(r) * al / 360), tf = rotate(a)) [for(i = [0 : sides]) let(t = i * al / sides) transform([r * sin(t), r * cos(t), 0], tf)]; function before(path1, path2) = //! Translate `path1` so its end meets the start of `path2` and then concatenate let(end = len(path1) - 1, offset = path2[0] - path1[end]) concat([for(i = [0 : end - 1]) path1[i] + offset], path2); function after(path1, path2) = //! Translate `path2` so its start meets the end of `path1` and then concatenate let(end1 = len(path1) - 1, end2 = len(path2) - 1, offset = path1[end1] - path2[0]) concat(path1, [for(i = [1 : end2]) path2[i] + offset]); function rounded_path(path) = //! Convert a rounded_path, consisting of a start coordinate, vertex / radius pairs and then an end coordinate, to a path of points for sweep. let(len = len(path)) assert(len > 3 && len % 2 == 0) [ path[0], // First point has no radius for(i = [1 : 2 : len - 3]) let( // Step through the vertices with radii, i.e. not the first or last prev = max(i - 2, 0), // Index of previous point, might be the first point, which is a special case p0 = path[prev], // Point before the vertex p1 = path[i], // Vertex r = path[i + 1], // Radius of shortcut curve p2 = path[i + 2], // Point after the vertex v1 = assert(Len(p0) == 3, str("expected path[", prev, "] to be a vertex coordinate, got ", p0)) assert(Len(p1) == 3, str("expected path[", i, "] to be a vertex coordinate, got ", p1)) assert(Len(p2) == 3, str("expected path[", i + 2, "] to be a vertex coordinate, got ", p2)) assert(is_num(r), str("expected path[", i + 1, "] to be a radius, got ", r)) p0 - p1, // Calculate vectors between vertices v2 = p2 - p1, a = angle_between(v1, -v2), // Angle turned through d = r * tan(a / 2), // Distance from vertex to tangents room = min(norm(v1), norm(v2)), // Maximum distance arc_start = assert(d <= room, str("Can't fit radius ", r, " into corner at vertex path[", i, "] = ", p1, " only room for radius ", room / tan(a / 2))) p1 + unit(v1) * d, // Calc the start position z_axis = unit(cross(v1, v2)), // z_axis is perpendicular to both vectors centre = arc_start + unit(cross(z_axis, v1)) * r, // Arc center is a radius away, and perpendicular to v1 and the z_axis. x_axis = arc_start - centre, // Make the x_axis along the radius to the start point, includes radius a scale factor y_axis = cross(x_axis, z_axis), // y_axis perpendicular to the other two sides = ceil(r2sides(r) * a / 360) // Sides needed to make the arc ) for(j = [0 : sides], t = a * j / sides) // For each vertex in the arc cos(t) * x_axis + sin(t) * y_axis + centre, // Circular arc in the tiled xy plane. path[len - 1], // Last point has no radius ]; function segmented_path(path, min_segment) = [ //! Add points to a path to enforce a minimum segment length for(i = [0 : len(path) - 2]) let(delta = assert(path[i] != path[i + 1], str("Coincident points at path[", i, "] = ", path[i])) path[i+1] - path[i], segs = ceil(norm(delta) / min_segment) ) for(j = [0 : segs - 1]) path[i] + delta * j / segs, // Linear interpolation path[len(path) - 1] ]; function offset_paths(path, offsets, twists = 0) = let( //! Create new paths offset from the original, optionally spiralling around it transforms = sweep_transforms(path, twist = 360 * twists, initial_rotation = 0) ) [for(o = offsets) let(initial = [o.x, o.y, o.z, 1]) [for(t = transforms) initial * t]]; function spiral_paths(path, n, r, twists, start_angle) = let( //! Create a new paths which spiral around the given path. Use for making twisted cables segment = twists ? path_length(path) / twists / r2sides(2 * r) : inf, transforms = sweep_transforms(segmented_path(path, segment), twist = 360 * twists) ) [for(i = [0 : n - 1]) let(initial = [r, 0, 0, 1] * rotate(start_angle + i * 360 / n)) [for(t = transforms) initial * t]]; function rounded_path_vertices(path) = [path[0], for(i = [1 : 2 : len(path) - 1]) path[i]]; //! Show the unrounded version of a rounded_path for debug module show_path(path, r = 0.1) //! Show a path using a chain of hulls for debugging, duplicate points are highlighted. for(i = [0 : len(path) - 2]) { hull($fn = 16) { translate(path[i]) sphere(r); translate(path[i + 1]) sphere(r); } if(path[i] == path[i + 1]) translate(path[i]) color("red") sphere($fn = 16, r * 4); } function move_along(j, z, path_S) = j >= len(path_S) - 1 || z <= path_S[j] ? j : move_along(j + 1, z, path_S); function spiral_wrap(path, profile, pitch, turns) = //! Create a path that spirals around the specified profile with the given pitch. let( transforms = sweep_transforms(path, loop = false, twist = 0), plen = len(profile), S = path_length(profile), profile = [ for(i = 0, s = 0; i < plen; s = s + norm(profile[(i + 1) % plen] - profile[i]), i = i + 1) let(p = profile[i]) [p.x, p.y, p.z + pitch * s / S, 1] ], path_len = len(path), path_S = [for(i = 0, s = 0; i < path_len; s = s + norm(path[(i + 1) % path_len] - path[i]), i = i + 1) s], n = turns * plen ) [ for(i = 0, j = 0, k = 0, zstep = 0; i < n; i = i + 1, k = i % plen, zstep = floor(i / plen) * pitch, j = move_along(j, zstep + profile[k].z, path_S)) if(!i || k) (profile[k] + [0, 0, zstep - path_S[j], 0]) * transforms[j] ];