mirror of
https://github.com/nophead/NopSCADlib.git
synced 2025-01-18 05:58:14 +01:00
194 lines
9.9 KiB
OpenSCAD
194 lines
9.9 KiB
OpenSCAD
//
|
|
// NopSCADlib Copyright Chris Palmer 2018
|
|
// nop.head@gmail.com
|
|
// hydraraptor.blogspot.com
|
|
//
|
|
// This file is part of NopSCADlib.
|
|
//
|
|
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
|
|
// GNU General Public License as published by the Free Software Foundation, either version 3 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with NopSCADlib.
|
|
// If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
//
|
|
//! Maths utilities for manipulating vectors and matrices.
|
|
//
|
|
function sqr(x) = x * x; //! Square x
|
|
function radians(degrees) = degrees * PI / 180; //! Convert radians to degrees
|
|
function degrees(radians) = radians * 180 / PI; //! Convert degrees to radians
|
|
|
|
function sinh(x) = (exp(x) - exp(-x)) / 2; //! hyperbolic sine
|
|
function cosh(x) = (exp(x) + exp(-x)) / 2; //! hyperbolic cosine
|
|
function tanh(x) = sinh(x) / cosh(x); //! hyperbolic tangent
|
|
function coth(x) = cosh(x) / sinh(x); //! hyperbolic cotangent
|
|
function argsinh(x) = ln(x + sqrt(sqr(x) + 1)); //! inverse hyperbolic sine
|
|
function argcosh(x) = ln(x + sqrt(sqr(x) - 1)); //! inverse hyperbolic cosine
|
|
function argtanh(x) = ln((1 + x) / (1 - x)) / 2;//! inverse hyperbolic tangent
|
|
function argcoth(x) = ln((x + 1) / (x - 1)) / 2;//! inverse hyperbolic cotangent
|
|
|
|
function translate(v) = let(u = is_list(v) ? len(v) == 2 ? [v.x, v.y, 0] //! Generate a 4x4 translation matrix, `v` can be `[x, y]`, `[x, y, z]` or `z`
|
|
: v
|
|
: [0, 0, v])
|
|
[ [1, 0, 0, u.x],
|
|
[0, 1, 0, u.y],
|
|
[0, 0, 1, u.z],
|
|
[0, 0, 0, 1] ];
|
|
|
|
function rotate(a, v) = //! Generate a 4x4 rotation matrix, `a` can be a vector of three angles or a single angle around `z`, or around axis `v`
|
|
is_undef(v) ? let(av = is_list(a) ? a : [0, 0, a],
|
|
cx = cos(av[0]),
|
|
cy = cos(av[1]),
|
|
cz = cos(av[2]),
|
|
sx = sin(av[0]),
|
|
sy = sin(av[1]),
|
|
sz = sin(av[2]))
|
|
[
|
|
[ cy * cz, sx * sy * cz - cx * sz, cx * sy * cz + sx * sz, 0],
|
|
[ cy * sz, sx * sy * sz + cx * cz, cx * sy * sz - sx * cz, 0],
|
|
[-sy, sx * cy, cx * cy, 0],
|
|
[ 0, 0, 0, 1]
|
|
]
|
|
: let(s = sin(a),
|
|
c = cos(a),
|
|
C = 1 - c,
|
|
m = sqr(v.x) + sqr(v.y) + sqr(v.z), // m used instead of norm to avoid irrational roots as much as possible
|
|
u = v / sqrt(m))
|
|
[
|
|
[ C * v.x * v.x / m + c, C * v.x * v.y / m - u.z * s, C * v.x * v.z / m + u.y * s, 0],
|
|
[ C * v.y * v.x / m + u.z * s, C * v.y * v.y / m + c, C * v.y * v.z / m - u.x * s, 0],
|
|
[ C * v.z * v.x / m - u.y * s, C * v.z * v.y / m + u.x * s, C * v.z * v.z / m + c, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
function rot3_z(a) = //! Generate a 3x3 matrix to rotate around z
|
|
let(c = cos(a),
|
|
s = sin(a))
|
|
[ [ c, -s, 0],
|
|
[ s, c, 0],
|
|
[ 0, 0, 1] ];
|
|
|
|
function rot2_z(a) = //! Generate a 2x2 matrix to rotate around z
|
|
let(c = cos(a),
|
|
s = sin(a))
|
|
[ [ c, -s],
|
|
[ s, c] ];
|
|
|
|
function scale(v) = let(s = is_list(v) ? v : [v, v, v]) //! Generate a 4x4 matrix that scales by `v`, which can be a vector of xyz factors or a scalar to scale all axes equally
|
|
[
|
|
[s.x, 0, 0, 0],
|
|
[0, s.y, 0, 0],
|
|
[0, 0, s.z, 0],
|
|
[0, 0, 0, 1]
|
|
];
|
|
|
|
function vec2(v) = [v.x, v.y]; //! Return a 2 vector with the first two elements of `v`
|
|
function vec3(v) = [v.x, v.y, v.z]; //! Return a 3 vector with the first three elements of `v`
|
|
function vec4(v) = [v.x, v.y, v.z, 1]; //! Return a 4 vector with the first three elements of `v`
|
|
function transform(v, m) = vec3(m * [v.x, v.y, v.z, 1]); //! Apply 4x4 transform to a 3 vector by extending it and cropping it again
|
|
function transform_points(path, m) = [for(p = path) transform(p, m)]; //! Apply transform to a path
|
|
function unit(v) = let(n = norm(v)) n ? v / n : v; //! Convert `v` to a unit vector
|
|
|
|
function transpose(m) = [ for(j = [0 : len(m[0]) - 1]) [ for(i = [0 : len(m) - 1]) m[i][j] ] ]; //! Transpose an arbitrary size matrix
|
|
|
|
function identity(n, x = 1) = [for(i = [0 : n - 1]) [for(j = [0 : n - 1]) i == j ? x : 0] ]; //! Construct an arbitrary size identity matrix
|
|
|
|
function reverse(v) = let(n = len(v) - 1) n < 0 ? [] : [for(i = [0 : n]) v[n - i]]; //! Reverse a vector
|
|
|
|
function angle_between(v1, v2) = acos(v1 * v2 / (norm(v1) * norm(v2))); //! Return the angle between two vectors
|
|
|
|
// http://eecs.qmul.ac.uk/~gslabaugh/publications/euler.pdf
|
|
function euler(R) = let(ay = asin(-R[2][0]), cy = cos(ay)) //! Convert a rotation matrix to an Euler rotation vector.
|
|
cy ? [ atan2(R[2][1] / cy, R[2][2] / cy), ay, atan2(R[1][0] / cy, R[0][0] / cy) ]
|
|
: R[2][0] < 0 ? [atan2( R[0][1], R[0][2]), 90, 0]
|
|
: [atan2(-R[0][1], -R[0][2]), -90, 0];
|
|
|
|
module position_children(list, t) //! Position children if they are on the Z = 0 plane when transformed by t
|
|
for(p = list)
|
|
let(q = t * p)
|
|
if(abs(transform([0, 0, 0], q).z) < 0.01)
|
|
multmatrix(q)
|
|
children();
|
|
|
|
// Matrix inversion: https://www.mathsisfun.com/algebra/matrix-inverse-row-operations-gauss-jordan.html
|
|
|
|
function augment(m) = let(l = len(m), n = identity(l)) [ // Augment a matrix by adding an identity matrix to the right
|
|
for(i = [0 : l - 1])
|
|
concat(m[i], n[i])
|
|
];
|
|
|
|
function rowswap(m, i, j) = [ // Swap two rows of a matrix
|
|
for(k = [0 : len(m) - 1])
|
|
k == i ? m[j] : k == j ? m[i] : m[k]
|
|
];
|
|
|
|
function solve_row(m, i) = let(diag = m[i][i]) [ // Make diagonal one by dividing the row by it and subtract from other rows to make column zero
|
|
for(j = [0 : len(m) - 1])
|
|
i == j ? m[j] / diag : m[j] - m[i] * m[j][i] / diag
|
|
];
|
|
|
|
function nearly_zero(x) = abs(x) < 1e-5; //! True if x is close to zero
|
|
|
|
function solve(m, i = 0, j = 0) = // Solve each row ensuring diagonal is not zero
|
|
i < len(m) ?
|
|
assert(i + j < len(m), "matrix is singular")
|
|
solve(!nearly_zero(m[i + j][i]) ? solve_row(j ? rowswap(m, i, i + j) : m, i) : solve(m, i, j + 1), i + 1)
|
|
: m;
|
|
|
|
function invert(m) = let(n =len(m), m = solve(augment(m))) [ //! Invert a matrix
|
|
for(i = [0 : n - 1]) [
|
|
for(j = [n : 2 * n - 1])
|
|
each m[i][j]
|
|
]
|
|
];
|
|
|
|
function circle_intersect(c1, r1, c2, r2) = //! Calculate one point where two circles in the X-Z plane intersect, clockwise around c1
|
|
let(
|
|
v = c1 - c2, // Line between centres
|
|
d = norm(v), // Distance between centres
|
|
a = atan2(v.z, v.x) - acos((sqr(d) + sqr(r2) - sqr(r1)) / (2 * d * r2)) // Cosine rule to find angle from c2
|
|
) c2 + r2 * [cos(a), 0, sin(a)]; // Point on second circle
|
|
|
|
function map(v, func) = [ for (e = v) func(e) ]; //! make a new vector where the func function argument is applied to each element of the vector v
|
|
function mapi(v, func) = [ for (i = [0:len(v)-1]) func(i,v[i]) ]; //! make a new vector where the func function argument is applied to each element of the vector v. The func will get the index number as first argument, and the element as second argument.
|
|
function reduce(v, func, unity) = let ( r = function(i,val) i == len(v) ? val : r(i + 1, func(val, v[i])) ) r(0, unity); //! reduce a vector v to a single entity by applying the func function recursively to the reduced value so far and the next element, starting with unity as the initial reduced value
|
|
function sumv(v) = reduce(v, function(a, b) a + b, 0); //! sum a vector of values that can be added with "+"
|
|
|
|
function xor(a,b) = (a && !b) || (!a && b); //! Logical exclusive OR
|
|
function cuberoot(x)= sign(x)*abs(x)^(1/3);
|
|
|
|
function quadratic_real_roots(a, b, c) = //! Returns real roots of a quadratic equation, biggest first. Returns empty list if no real roots
|
|
let(2a = 2 * a,
|
|
2c = 2 * c,
|
|
det = b^2 - 2a * 2c
|
|
) det < 0 ? [] :
|
|
let(r = sqrt(det),
|
|
x1 = b < 0 ? 2c / (-b + r) : (-b - r) / 2a,
|
|
x2 = b < 0 ? (-b + r) / 2a : 2c / (-b - r)
|
|
) [x2, x1];
|
|
|
|
function cubic_real_roots(a, b, c, d) = //! Returns real roots of cubic equation
|
|
let(b = b / a,
|
|
c = c / a,
|
|
d = d / a,
|
|
inflection = -b / 3,
|
|
p = c - b^2 / 3,
|
|
q = 2 * b^3 / 27 - b * c / 3 + d,
|
|
det = q^2 / 4 + p^3 / 27,
|
|
roots = !p && !q ? 1 : nearly_zero(det) ? 2 : det < 0 ? 3 : 1,
|
|
r = sqrt(det),
|
|
x = cuberoot(-q / 2 - r) + cuberoot(-q / 2 + r)
|
|
) roots == 1 ? [x] :
|
|
roots == 2 ? [3 * q /p + inflection, -3 * q / p / 2 + inflection] :
|
|
[for(i = [0 : roots - 1]) 2 * sqrt(-p / 3) * cos(acos(3 * q * sqrt(-3 / p) / p / 2) - i * 120) + inflection];
|
|
|
|
function path_length(path, i = 0, length = 0) = //! Calculated the length along a path
|
|
i >= len(path) - 1 ? length
|
|
: path_length(path, i + 1, length + norm(path[i + 1] - path[i]));
|