1
0
mirror of https://github.com/nophead/NopSCADlib.git synced 2025-01-17 21:48:43 +01:00
NopSCADlib/printed/drag_chain.scad

350 lines
16 KiB
OpenSCAD

//
// NopSCADlib Copyright Chris Palmer 2020
// nop.head@gmail.com
// hydraraptor.blogspot.com
//
// This file is part of NopSCADlib.
//
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
// GNU General Public License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along with NopSCADlib.
// If not, see <https://www.gnu.org/licenses/>.
//
//
//! Parametric cable drag chain to limit the bend radius of a cable run.
//!
//! Each link has a maximum bend angle of 45&deg;, so the minimum radius is proportional to the link length.
//!
//! The travel property is how far it can move in each direction, i.e. half the maximum travel if the chain is mounted in the middle of the travel.
//!
//! The ends can have screw lugs with four screw positions to choose from, specified by a list of two arrays of four bools.
//! If none are enabled then a child object is expected to customise the end and this gets unioned with the blank end.
//! If both ends are customised then two children are expected.
//! Each child is called twice, once with `$fasteners` set to 0 to augment the STL and again with `$fasteners` set to 1 to add
//! to the assembly, for example to add inserts.
//
include <../core.scad>
use <../utils/horiholes.scad>
use <../utils/maths.scad>
function drag_chain_name(type) = type[0]; //! The name to allow more than one in a project
function drag_chain_size(type) = type[1]; //! The internal size and link length
function drag_chain_travel(type) = type[2]; //! X travel
function drag_chain_wall(type) = type[3]; //! Side wall thickness
function drag_chain_bwall(type) = type[4]; //! Bottom wall
function drag_chain_twall(type) = type[5]; //! Top wall
function drag_chain_clearance(type) = type[6]; //! Clearance around joints
function drag_chain_supports(type) = type[7]; //! Whether to print version of chain with or without supports
function drag_chain_screw(type) = type[8]; //! Mounting screw for the ends
function drag_chain_screw_lists(type) = type[9]; //! Two lists of four bools to say which screws positions are used
function drag_chain_radius(type) = //! The bend radius at the pivot centres
let(s = drag_chain_size(type))
s.x / 2 / sin(360 / 16);
function drag_chain_z(type) = //! Outside dimension of a 180 bend
let(os = drag_chain_outer_size(type), s = drag_chain_size(type))
2 * drag_chain_radius(type) + os.z;
function drag_chain(name, size, travel, wall = 1.6, bwall = 1.5, twall = 1.5, clearance = 0.1, supports = true, screw = M2_cap_screw, screw_lists = [[1,0,0,1],[1,0,0,1]]) = //! Constructor
[name, size, travel, wall, bwall, twall, clearance, supports, screw, screw_lists];
function drag_chain_outer_size(type) = //! Link outer dimensions
let(s = drag_chain_size(type), z = s.z + drag_chain_bwall(type) + drag_chain_twall(type))
[s.x + z, s.y + 4 * drag_chain_wall(type) + 2 * drag_chain_clearance(type), z];
function drag_chain_links(type) = //! Number of links in chain
ceil(drag_chain_travel(type) / drag_chain_size(type).x) + 4;
function screw_lug_radius(screw) = //! Radius of a screw lug
corrected_radius(screw_clearance_radius(screw)) + 3.1 * extrusion_width;
module screw_lug(screw, h = 0) //! Create a D shaped lug for a screw
extrude_if(h, center = false)
difference() {
r = screw_lug_radius(screw);
hull() {
circle4n(r);
translate([-r, -r])
square([2 * r, eps]);
}
poly_circle(screw_clearance_radius(screw));
}
function bool2int(b) = b ? 1 : 0;
module drag_chain_screw_positions(type, end) { //! Place children at the screw positions, end = 0 for the start, 1 for the end
r = screw_lug_radius(drag_chain_screw(type));
s = drag_chain_size(type);
os = drag_chain_outer_size(type);
clearance = drag_chain_clearance(type);
R = os.z / 2;
x0 = end ? R + norm([drag_chain_cam_x(type), R - drag_chain_twall(type)]) + clearance + r : r;
x1 = end ? os.x - r : os.x - 2 * R - clearance - r;
for(i = [0 : 3], x = [x0, x1, x0, x1][i], y = [-1, -1, 1, 1][i])
if(drag_chain_screw_lists(type)[bool2int(end)][i])
translate([x, y * (s.y / 2 + r)])
let($a = [180, 0, 180, 0][i])
children();
}
function drag_chain_cam_x(type) = // how far the cam sticks out
let(s = drag_chain_size(type),
r = drag_chain_outer_size(type).z / 2,
wall = drag_chain_wall(type),
cam_r = s.x - 2 * drag_chain_clearance(type) - wall - r, // inner_x_normal - clearance - r
twall = drag_chain_twall(type)
) min(sqrt(max(sqr(cam_r) - sqr(r - twall), 0)), r);
module drag_chain_link(type, start = false, end = false, check_kids = true) { //! One link of the chain, special case for start and end
stl(str(drag_chain_name(type), "_drag_chain_link", start ? "_start" : end ? "_end" : ""));
s = drag_chain_size(type);
wall = drag_chain_wall(type);
bwall = drag_chain_bwall(type);
twall = drag_chain_twall(type);
os = drag_chain_outer_size(type);
clearance = drag_chain_clearance(type);
supports = drag_chain_supports(type);
r = os.z / 2;
// initial estimates of pin_r and pin_h
pin_r0 = r / 2 - 0.2;
pin_h0 = min(wall + clearance, 2 * pin_r0 - 1);
// for conical pin: ensure minimum radius of top of pin and pin does not overlap cutout
pin_r = supports ? r / 2 : min(r / 2 - 0.2, (os.z - 2 * twall - 3 * pin_h0 / 4 - 0.2) / 2);
pin_h = min(wall + clearance, 2 * pin_r - 1);
socket_x = r;
pin_x = socket_x + s.x;
outer_normal_x = pin_x - r - clearance; // s.x - clearance
outer_end_x = end ? os.x : outer_normal_x;
inner_x = start ? 0 : outer_normal_x - wall; // s.x - clearance - wall
roof_x_normal = 2 * r - twall;
cam_x = drag_chain_cam_x(type);
assert(r + norm([drag_chain_cam_x(type), r - drag_chain_twall(type)]) + clearance <= inner_x || start, "Link must be longer");
vflip(!supports)
difference() {
union() {
for(side = [-1, 1])
rotate([90, 0, 0]) {
// Outer cheeks
translate_z(side * (os.y / 2 - wall / 2))
difference() {
linear_extrude(wall, center = true)
hull() {
if(start)
square([eps, os.z]);
else
translate([socket_x, r])
rotate(supports ? 180 : 0)
teardrop(r = r, h = 0);
translate([outer_end_x - eps, 0])
square([eps, os.z]);
}
if(!start)
if(supports)
translate([socket_x, r, 0])
horihole(pin_r, r, wall + 2*eps);
else
translate([socket_x, r, -side * (wall / 2 + clearance)])
rotate(180)
hull() {
horihole(r = pin_r + pin_h / 2, z = r, h = eps);
translate_z(side * pin_h)
horihole(r = pin_r - pin_h / 2, z = r, h = eps);
}
}
// Inner cheeks
translate_z(side * (s.y / 2 + wall / 2)) {
linear_extrude(wall, center = true)
difference() {
union() {
hull() {
if(!end) {
translate([pin_x, r])
rotate(supports ? 180 : 0)
teardrop(r = r, h = 0);
translate([pin_x, twall])
square([cam_x, eps]);
}
else
translate([os.x - eps, 0])
square([eps, os.z]);
translate([inner_x, 0])
square([eps, os.z]);
}
}
// Cutout for top wall
if(!end)
intersection() {
translate([pin_x - r, 0])
square([3 * r, twall]); // When straight
translate([pin_x, r])
rotate(-45)
translate([-r + roof_x_normal, -r - twall]) // When bent fully
square(os.z);
}
}
// Pin
if(!end)
if(supports)
translate([pin_x, r, side * (wall / 2 + clearance)])
horicylinder(r = pin_r, z = r, h = 2 * wall + eps);
else
translate([pin_x, r, side * wall / 2])
vflip(side == -1)
cylinder(r1 = pin_r + pin_h / 2, r2 = pin_r - pin_h / 2, h = pin_h + eps);
}
// Cheek joint
translate([inner_x, 0, side * (s.y / 2 + wall) - 0.5])
cube([outer_end_x - inner_x, os.z, 1]);
}
// Roof, actually the floor when printed with supports
roof_x = start ? 0 : roof_x_normal;
roof_end = end ? s.x + 2 * r : s.x + r - twall - clearance;
translate([roof_x, -s.y / 2 - wall, 0]) {
cube([roof_end - roof_x, s.y + 2 * wall, twall]);
translate([0, -wall, 0])
cube([s.x - roof_x - clearance, s.y + 4 * wall, twall]);
}
// Floor, actually the roof when printed with supports
floor_x = start ? 0 : 2 * r;
floor_end = end ? s.x + 2 * r : s.x + r;
translate([floor_x, -s.y / 2 - wall, os.z - bwall]) {
cube([floor_end - floor_x, s.y + 2 * wall, bwall]);
translate([0, -wall, 0])
cube([s.x - floor_x - clearance, s.y + 4 * wall, bwall]);
}
if(start || end) {
drag_chain_screw_positions(type, end)
rotate($a)
screw_lug(drag_chain_screw(type), os.z);
if(check_kids) {
custom = drag_chain_screw_lists(type)[bool2int(end)] == [0, 0, 0, 0];
assert($children == bool2int(custom), str("wrong number of children for ", end ? "end" : "start", " STL customisation: ", $children));
}
children();
}
} // end union
if(start || end)
translate_z(-eps)
drag_chain_screw_positions(type, end)
rotate($a)
poly_cylinder(r = screw_clearance_radius(drag_chain_screw(type)), h = os.z + 2 * eps, center = false);
} // end difference
if(supports && show_supports() && !end) {
for(side = [-1, 1]) {
w = 2.1 * extrusion_width;
translate([s.x + r + cam_x - w / 2, side * (s.y / 2 + wall / 2), twall / 2])
cube([w, wall, twall], center = true);
h = round_to_layer(r - pin_r / sqrt(2));
y = s.y / 2 + max(wall + w / 2 + clearance, 2 * wall + clearance - w / 2);
translate([s.x + r, side * y, h / 2])
cube([pin_r * sqrt(2), w, h], center = true);
gap = cam_x - pin_r / sqrt(2) + extrusion_width;
translate([s.x + r + cam_x - gap / 2, side * (s.y / 2 + wall + clearance / 2), layer_height / 2])
cube([gap, 2 * wall + clearance, layer_height], center = true);
}
}
}
// Need to use a wrapper because can't define nested modules in an assembly
module _drag_chain_assembly(type, pos = 0, render = false) {
s = drag_chain_size(type);
x = (1 + exploded()) * s.x;
r = drag_chain_radius(type) * x / s.x;
links = drag_chain_links(type);
actual_travel = (links - 4) * s.x;
z = drag_chain_outer_size(type).z;
zb = z / 2; // z of bottom track
c = [actual_travel / 2 + pos / 2, 0, r + zb]; // centre of bend
points = [ // Calculate list of hinge points
for(i = 0, p = [0, 0, z / 2 + 2 * r]; i < links + 1;
i = i + 1,
dx = p.z > c.z ? x : -x,
p = max(p.x + dx, p.x) <= c.x ? p + [dx, 0, 0] // Straight sections
: let(q = circle_intersect(p, x, c, r))
q.x <= c.x ? [p.x - sqrt(sqr(x) - sqr(p.z - zb)), 0, zb] // Transition back to straight
: q) // Circular section
p
];
npoints = len(points);
module link(n) // Position and colour link with origin at the hinge hole
translate([-z / 2, 0, -z / 2]) {
vflip(!drag_chain_supports(type))
stl_colour(n < 0 || n == npoints - 1 ? pp3_colour : n % 2 ? pp1_colour : pp2_colour)
render_if(render)
drag_chain_link(type, start = n == -1, end = n == npoints - 1, check_kids = false)
let($fasteners = 0)
children();
let($fasteners = 1) children();
}
screws = drag_chain_screw_lists(type);
custom_start = screws[0] == [0, 0, 0, 0];
custom_end = screws[1] == [0, 0, 0, 0];
assert($children == bool2int(custom_start) + bool2int(custom_end), str("wrong number of children for end customisation: ", $children));
for(i = [0 : npoints - 2]) let(v = points[i + 1] - points[i])
translate(points[i])
rotate([0, -atan2(v.z, v.x), 0])
link(i);
translate(points[0] - [x, 0, 0])
link(-1)
if(custom_start)
children(0);
translate(points[npoints - 1])
hflip()
link(npoints - 1)
if(custom_end)
children(custom_start ? 1 : 0);
}
//! 1. Remove the support material from the links with side cutters.
//! 1. Clip the links together with the special ones at the ends.
module drag_chain_assembly(type, pos = 0, render = false) //! Drag chain assembly
assembly(str(drag_chain_name(type), "_drag_chain"), big = true, ngb = true)
if($children == 2)
_drag_chain_assembly(type, pos, render) {
children(0);
children(1);
}
else if($children == 1)
_drag_chain_assembly(type, pos, render)
children(0);
else
_drag_chain_assembly(type, pos, render);