mirror of
https://github.com/nophead/NopSCADlib.git
synced 2025-01-17 05:28:14 +01:00
139 lines
7.8 KiB
OpenSCAD
139 lines
7.8 KiB
OpenSCAD
//
|
|
// NopSCADlib Copyright Chris Palmer 2020
|
|
// nop.head@gmail.com
|
|
// hydraraptor.blogspot.com
|
|
//
|
|
// This file is part of NopSCADlib.
|
|
//
|
|
// NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the
|
|
// GNU General Public License as published by the Free Software Foundation, either version 3 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with NopSCADlib.
|
|
// If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
//
|
|
//! Utilities for making involute gears.
|
|
//!
|
|
//! Formulas from <https://khkgears.net/new/gear_knowledge/gear_technical_reference/involute_gear_profile.html>
|
|
//! <https://khkgears.net/new/gear_knowledge/gear_technical_reference/calculation_gear_dimensions.html>
|
|
//! and <https://www.tec-science.com/mechanical-power-transmission/involute-gear/calculation-of-involute-gears/>
|
|
//!
|
|
//! `involute_gear_profile()` returns a polygon that can have the bore and spokes, etc, subtracted from it before linear extruding it to 3D.
|
|
//! Helical gears can be made using `twist` and bevel gears using `scale` parameters of `linear_extrude()`.
|
|
//!
|
|
//! Gears with less than 19 teeth (when pressure angle is 20) are profile shifted to avoid undercutting the tooth root. 7 teeth is considered
|
|
//! the practical minimum.
|
|
//!
|
|
//! The clearance between tip and root defaults to module / 6, but can be overridden by setting the `clearance` parameter.
|
|
//!
|
|
//! The origin of the rack is the left end of the pitch line and its width is below the pitch line. I.e. it does not include the addendum.
|
|
//!
|
|
//! `involute_worm_profile()` returns a tooth profile that can be passed to `thread()` to make worms.
|
|
//
|
|
include <core/core.scad>
|
|
use <maths.scad>
|
|
|
|
function involute(r, u) = let(a = degrees(u), c = cos(a), s = sin(a)) r * [c + u * s, s - u * c]; //! Involute of circle radius r at angle u in radians
|
|
|
|
function profile_shift(z, pa) = z ? max(1 - z * sqr(sin(pa)) / 2, 0) : 0; //! Calculate profile shift for small gears
|
|
|
|
function centre_distance(m, z1, z2, pa = 20) = //! Calculate distance between centres taking profile shift into account
|
|
let(x1 = profile_shift(z1, pa), x2 = profile_shift(z2, pa)) m * (z1/2 + z2/2 + x1 + x2);
|
|
|
|
function involute_gear_od(m, z, pa = 20) = //! involute gear outside diameter given modulus, tooth count and pressure angle
|
|
m * (z + 2 * profile_shift(z, pa) + 2);
|
|
|
|
module involute_gear_profile(m, z, pa = 20, clearance = undef, steps = 20) { //! Calculate gear profile given module, number of teeth and pressure angle
|
|
assert(z >= 7, "Gears must have at least 7 teeth.");
|
|
d = m * z; // Reference pitch circle diameter
|
|
x = profile_shift(z, pa); // Profile shift
|
|
c = is_undef(clearance) ? m / 6 : clearance; // Clearance from tip to root
|
|
|
|
base_d = d * cos(pa); // Base diameter
|
|
root_r = d / 2 + m * (x - 1) - c; // Root radius (dedendum circle radius)
|
|
tip_d = d + 2 * m * (1 + x); // Tip diameter (addendum circle diameter)
|
|
tpa = acos(base_d / tip_d); // Tip pressure angle
|
|
inva = tan(pa) - radians(pa); // Involute alpha
|
|
invaa = tan(tpa) - radians(tpa); // Involute alphaa
|
|
ta = PI / (2 * z) + 2 * x * tan(pa) / z + inva - invaa; // Tooth tip thickness angle, radians
|
|
crest_w = ta * tip_d; // Crest width
|
|
umax = sqrt(sqr(tip_d / base_d) - 1); // Max value of the involute parameter
|
|
|
|
base_r = base_d / 2;
|
|
p1 = involute(base_r, 0);
|
|
p2 = involute(base_r, umax);
|
|
dist = norm(p2 - p1); // distance between beginning and end of the involute curve
|
|
|
|
base_angle = 2 * acos((sqr(base_r) + sqr(tip_d / 2) - sqr(dist)) / base_r / tip_d) + degrees(2 * ta);
|
|
root_angle = 360 / z - base_angle;
|
|
root_circle_r = base_r * sin(root_angle / 2);
|
|
|
|
if(!is_undef($show_numbers) && $show_numbers) {
|
|
echo(d=d);
|
|
echo(base_d=base_d);
|
|
echo(tip_d=tip_d);
|
|
echo(tpa = tpa);
|
|
echo(inva=inva);
|
|
echo(invaa=invaa);
|
|
echo(x=x);
|
|
echo(ta=ta);
|
|
echo(crest_w=crest_w);
|
|
echo(umax = umax);
|
|
echo(base_angle=base_angle);
|
|
echo(root_angle=root_angle);
|
|
}
|
|
involute = [for(i = [0 : steps], u = umax * i / steps) involute(base_r, u)]; // involute for the bottom side of the tooth
|
|
truncated = [for(p = involute) if((rot2_z(-base_angle / 2) * p).y <= 0) p]; // removed any above the centreline to prevent overlap
|
|
reflection = reverse([for(p = truncated) rot2_z(base_angle) * [p.x, -p.y] ]); // reflect and rotate to make the top edge
|
|
|
|
root = reverse([for(a = [90 : 180 / steps : 270]) rot2_z(base_angle + root_angle / 2) * ([base_r, 0] + root_circle_r * [cos(a), sin(a)]) ]);
|
|
tooth = concat(truncated, reflection, root);
|
|
gear = concat([for(i = [0 : z - 1], p = tooth) rot2_z(i * 360 / z) * p]);
|
|
rotate(-base_angle / 2)
|
|
union() {
|
|
polygon(gear);
|
|
|
|
circle(root_r);
|
|
}
|
|
}
|
|
|
|
function involute_rack_tooth_profile(m, pa = 20, clearance = undef) = //! Calculate rack tooth profile given module and pressure angle
|
|
let(p = PI * m, // Pitch
|
|
ha = m, // Addendum
|
|
c = is_undef(clearance) ? m / 4 : clearance, // Tip root clearance
|
|
hf = m + c, // Dedendum
|
|
hw = 2 * m, // Working depth
|
|
h = ha + hf, // Tooth depth
|
|
crest_w = p / 2 - 2 * ha * tan(pa), // Crest width
|
|
base_w = crest_w + 2 * hw * tan(pa), // Base width
|
|
root_w = p - base_w, // Root width
|
|
clearance_w = root_w - 2 * c * tan(pa), // Width of clearance without fillet
|
|
kx = tan(pa / 2 + 45), // Fillet ratio of radius and xoffset
|
|
pf = min(0.38 * m, kx * clearance_w / 2), // Dedendum fillet radius
|
|
x = pf / kx, // Fillet centre x offset from corner
|
|
sides = ceil(r2sides(pf) * (90 - pa) / 360), // Fillet facets taking $fa, $fs and $fn into account
|
|
fillet = [ for(i = [0 : sides - 1], a = i * (90 - pa) / sides + 270) [clearance_w / 2 - x, -hf + pf] + pf * [cos(a), sin(a)] ],
|
|
reflection = reverse([for(pt = fillet) [p - pt.x, pt.y] ]) // reflect for trailing edge
|
|
) concat(fillet, [ [root_w / 2, -hw / 2], [p / 2 - crest_w / 2, ha], [p / 2 + crest_w / 2, ha], [p - root_w / 2, -hw / 2] ], reflection);
|
|
|
|
module involute_rack_profile(m, z, w, pa = 20, clearance = undef) { //! Calculate rack profile given module, number of teeth and pressure angle
|
|
p = PI * m; // Pitch
|
|
hf = 1.25 * m; // Dedendum
|
|
tooth = involute_rack_tooth_profile(m, pa, clearance);
|
|
teeth = [for(i = [0 : z - 1], pt = tooth) [pt.x + i * p, pt.y] ];
|
|
|
|
polygon(concat([[0, -w], [0, -hf]], teeth, [[z * p, -hf ], [z * p, -w]])); // Add the corners
|
|
}
|
|
|
|
function involute_worm_profile(m, pa = 20, clearance = undef) = //! Calculate worm profile suitable for passing to thread()
|
|
let(tooth = involute_rack_tooth_profile(m),
|
|
pitch = PI * m,
|
|
y_min = min([for(p = tooth) p.y])
|
|
) [for(p = tooth) [p.x - pitch / 2, p.y - y_min, 0]]; // Offset to be positive in y, centred in x and add 0 z coordinate
|