1
0
mirror of https://github.com/JustinSDK/dotSCAD.git synced 2025-01-17 14:18:13 +01:00
dotSCAD/examples/turtle/lsystem2_collection.scad

331 lines
9.1 KiB
OpenSCAD
Raw Normal View History

2022-06-06 13:11:46 +08:00
use <turtle/lsystem2.scad>
use <util/dedup.scad>
use <line2d.scad>
2020-05-03 08:27:06 +08:00
2021-08-31 10:02:48 +08:00
for(line = dedup(fern())) {
2020-05-03 08:27:06 +08:00
line2d(
line[0],
line[1],
.2,
p1Style = "CAP_ROUND",
p2Style = "CAP_ROUND"
);
}
function fern(n = 8, angle = 4, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "EEEA",
rules = [
["A", "[++++++++++++++EC]B+B[--------------ED]B+BA"],
["C", "[---------EE][+++++++++EE]B+C"],
["D", "[---------EE][+++++++++EE]B-D"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start, forward_chars = "ABCDE");
function tree(n = 2, angle = 36, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F",
rules = [
["F", "F[+FF][-FF]F[-F][+F]F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function plant(n = 4, angle = 25, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "X",
rules = [
["X", "F+[[X]-X]-F[-FX]+X"],
["F", "FF"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function koch_curve(n = 4, angle = 60, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F",
rules = [
["F", "F-F++F-F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function koch_curve_3(n = 3, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F-F-F-F",
rules = [
["F", "FF-F+F-F-FF"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function koch_snowflake(n = 4, angle = 60, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F++F++F",
rules = [
["F", "F-F++F-F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function koch_quadratic(n = 3, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F-F-F-F",
rules = [
["F", "FF-F-F-F-F-F+F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function koch_quadratic_type1(n = 4, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F",
rules = [
["F", "F-F+F+F-F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function koch_quadratic_type2(n = 4, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F",
rules = [
["F", "F-F+F+FF-F-F+F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function koch_star(n = 4, angle = 60, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F++F++F",
rules = [
["F", "F+F--F+F"]
]
)
2020-10-23 14:40:38 +08:00
lsystem2(axiom, rules, n, angle, leng, heading, start);
2020-05-03 08:27:06 +08:00
function dragon_curve(n = 10, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "FX",
rules = [
["X", "X+YF+"],
["Y", "-FX-Y"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function twin_dragon_curve(n = 8, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
2020-10-23 15:06:46 +08:00
axiom = "FX+FX",
2020-05-03 08:27:06 +08:00
rules = [
["X", "X+YF"],
2020-10-23 15:06:46 +08:00
["Y", "FX-Y"]
2020-05-03 08:27:06 +08:00
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function hilbert_curve(n = 5, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "A",
rules = [
["A", "-BF+AFA+FB-"],
["B", "+AF-BFB-FA+"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function moore_curve(n = 4, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "LFL+F+LFL",
rules = [
["L", "-RF+LFL+FR-"],
["R", "+LF-RFR-FL+"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function peano_curve(n = 3, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "L",
rules = [
["L", "LFRFL-F-RFLFR+F+LFRFL"],
["R", "RFLFR+F+LFRFL-F-RFLFR"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function gosper_curve(n = 4, angle = 60, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "A",
rules = [
["A", "A-B--B+A++AA+B-"],
["B", "+A-BB--B-A++A+B"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start, "AB");
function gosper_star(n = 2, angle = 60, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "X-X-X-X-X-X",
rules = [
["X", "FX+YF++YF-FX--FXFX-YF+"],
["Y", "-FX+YFYF++YF+FX--FX-FY"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function levy_c_curve(n = 8, angle = 45, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F",
rules = [
["F", "+F--F+"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function island_curve(n = 2, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F-F-F-F",
rules = [
["F", "F-f+FF-F-FF-Ff-FF+f-FF+F+FF+Ff+FFF"],
["f", "ffffff"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function sierpinski_triangle(n = 5, angle = 120, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F-G-G",
rules = [
["F", "F-G+F+G-F"],
["G", "GG"]
]
)
2020-10-23 15:27:52 +08:00
lsystem2(axiom, rules, n, angle, leng, heading, start, "G");
2020-05-03 08:27:06 +08:00
function sierpinski_arrowhead(n = 6, angle = 60, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "XF",
rules = [
["X", "YF+XF+Y"],
["Y", "XF-YF-X"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function sierpinski_square(n = 8, angle = 45, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "L--F--L--F",
rules = [
["L", "+R-F-R+"],
["R", "-L+F+L-"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function sierpinski_carpet(n = 4, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F",
rules = [
["F", "F+F-F-F-G+F+F+F-F"],
["G", "GGG"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start, forward_chars = "G");
function terdragon(n = 5, angle = 120, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F",
rules = [
["F", "F+F-F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function pentadendrite(n = 2, angle = 72, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F-F-F-F-F",
rules = [
["F", "F-F-F++F+F-F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function icy(n = 2, angle = 90, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F+F+F+F",
rules = [
["F", "FF+F++F+F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
2020-10-23 15:48:45 +08:00
function round_star(n = 6, angle = 77, leng = 10, heading = 0, start = [0, 0]) =
2020-05-03 08:27:06 +08:00
let(
axiom = "F",
rules = [
["F", "F++F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function penrose_tiling(n = 2, angle = 36, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "[7]++[7]++[7]++[7]++[7]",
rules = [
["6", "81++91----71[-81----61]++"],
["7", "+81--91[---61--71]+"],
["8", "-61++71[+++81++91]-"],
["9", "--81++++61[+91++++71]--71"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start, "6789");
function bush(n = 3, angle = 16, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "++++F",
rules = [
["F", "FF-[-F+F+F]+[+F-F-F]"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function pentigree(n = 3, angle = 72, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F-F-F-F-F",
rules = [
["F", "F-F++F+F-F-F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function penrose_snowflake(n = 3, angle = 18, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F----F----F----F----F",
rules = [
["F", "F----F----F----------F++F----F"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);
function weed(n = 6, angle = 22.5, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "F",
rules = [
["F", "FF-[XY]+[XY]"],
["X", "+FY"],
["Y", "-FX"]
]
)
2021-08-31 11:28:42 +08:00
lsystem2(axiom, rules, n, angle, leng, heading, start);
function euler_spiral(n = 30, angle = 2.75, leng = 1, heading = 0, start = [0, 0]) =
let(
axiom = "AF+",
rules = [
["A", "AF+"],
["F", "F+"]
]
)
lsystem2(axiom, rules, n, angle, leng, heading, start);