1
0
mirror of https://github.com/JustinSDK/dotSCAD.git synced 2025-01-17 22:28:16 +01:00
dotSCAD/docs/lib3x-mz_theta_cells.md

80 lines
2.4 KiB
Markdown
Raw Normal View History

2021-03-07 21:11:47 +08:00
# mz_theta_cells
This function returns cell data of a theta maze. The data is a two-dimensional list with different row lengths. A cell has the data structure `[ri, ci, type]`. `ri` and `ci` are 0-based. `ri` means the ri-th ring and `ci` means the ci-th (counter-clockwise) cell of the ring.
![mz_theta_cells](images/lib3x-mz_theta_cells-1.JPG)
2021-03-07 21:18:02 +08:00
The value of `type` is the wall type of the cell. It can be `0`, `1`, `2` or `3`. Setting them to constants is convenient.
2021-03-07 21:11:47 +08:00
NO_WALL = 0; // the cell has no wall
INWARD_WALL = 1; // the cell has an inward wall
CCW_WALL = 2; // the cell has a counter-clockwise wall
INWARD_CCW_WALL = 3; // the cell has an inward wall and a clockwise wall
![mz_theta_cells](images/lib3x-mz_theta_cells-2.JPG)
**Since:** 3.0
## Parameters
2021-03-07 21:19:36 +08:00
2021-03-07 21:11:47 +08:00
- `rows` : The number of rings.
- `beginning_number` : The number of cells in the first row.
- `start` : The start point to travel the maze. Default to `[0, 0]`.
- `seed` : The maze is traveling randomly. Use `seed` to initialize the pseudorandom number generator.
## Examples
use <maze/mz_theta_cells.scad>;
2021-12-04 10:57:29 +08:00
use <polyline_join.scad>;
2021-03-07 21:11:47 +08:00
rows = 8;
beginning_number = 8;
cell_width = 10;
wall_thickness = 2;
NO_WALL = 0;
INWARD_WALL = 1;
CCW_WALL = 2;
INWARD_CCW_WALL = 3;
function vt_from_angle(theta, r) = [r * cos(theta), r * sin(theta)];
maze = mz_theta_cells(rows, beginning_number);
// draw cell walls
2022-04-06 17:44:11 +08:00
for(rows = maze, cell = rows) {
ri = cell[0];
ci = cell[1];
type = cell[2];
thetaStep = 360 / len(maze[ri]);
innerR = (ri + 1) * cell_width;
outerR = (ri + 2) * cell_width;
theta1 = thetaStep * ci;
theta2 = thetaStep * (ci + 1);
innerVt1 = vt_from_angle(theta1, innerR);
innerVt2 = vt_from_angle(theta2, innerR);
outerVt2 = vt_from_angle(theta2, outerR);
if(type == INWARD_WALL || type == INWARD_CCW_WALL) {
polyline_join([innerVt1, innerVt2])
circle(wall_thickness / 2);
}
if(type == CCW_WALL || type == INWARD_CCW_WALL) {
polyline_join([innerVt2, outerVt2])
circle(wall_thickness / 2);
}
2021-03-07 21:11:47 +08:00
}
// outmost walls
thetaStep = 360 / len(maze[rows - 1]);
r = cell_width * (rows + 1);
for(theta = [0:thetaStep:360 - thetaStep]) {
vt1 = vt_from_angle(theta, r);
vt2 = vt_from_angle(theta + thetaStep, r);
2021-12-04 10:57:29 +08:00
polyline_join([vt1, vt2])
circle(wall_thickness / 2);
2021-03-07 21:11:47 +08:00
}
![mz_theta_cells](images/lib3x-mz_theta_cells-3.JPG)