1
0
mirror of https://github.com/JustinSDK/dotSCAD.git synced 2025-08-12 09:44:16 +02:00

update docs

This commit is contained in:
Justin Lin
2021-03-07 21:11:47 +08:00
parent 80d4c838fd
commit 22c62be08b
5 changed files with 85 additions and 6 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@@ -1,12 +1,12 @@
# mz_square_cells # mz_square_cells
This function returns cell data of a square maze. The data is a list of cells. A cell has the data structure `[x, y, wallType]`. `x` and `y` are 0-based. `x` means x-th column and `y` means y-th row for a cell. The value of `type` can be `0`, `1`, ``2`, `3` or `4`. Setting them to constants is convenient. This function returns cell data of a square maze. The data is a list of cells. A cell has the data structure `[x, y, type]`. `x` and `y` are 0-based. `x` means the x-th column and `y` means y-th row for a cell. The value of `type` can be `0`, `1`, ``2`, `3` or `4`. Setting them to constants is convenient.
NO_WALL = 0; NO_WALL = 0; // the cell has no wall
TOP_WALL = 1; TOP_WALL = 1; // the cell has a top wall
RIGHT_WALL = 2; RIGHT_WALL = 2; // the cell has a right wall
TOP_RIGHT_WALL = 3; TOP_RIGHT_WALL = 3; // the cell has a top wall and a right wall
MASK = 4; MASK = 4; // the cell is masked.
The cell data is seperated from views. You can use cell data to construct [different types of mazes](https://www.thingiverse.com/justinsdk/collections/maze-generator). The cell data is seperated from views. You can use cell data to construct [different types of mazes](https://www.thingiverse.com/justinsdk/collections/maze-generator).

View File

@@ -0,0 +1,79 @@
# mz_theta_cells
This function returns cell data of a theta maze. The data is a two-dimensional list with different row lengths. A cell has the data structure `[ri, ci, type]`. `ri` and `ci` are 0-based. `ri` means the ri-th ring and `ci` means the ci-th (counter-clockwise) cell of the ring.
![mz_theta_cells](images/lib3x-mz_theta_cells-1.JPG)
The value of `type` is the wall type of the cell. It can be `0`, `1`, ``2` or `3`. Setting them to constants is convenient.
NO_WALL = 0; // the cell has no wall
INWARD_WALL = 1; // the cell has an inward wall
CCW_WALL = 2; // the cell has a counter-clockwise wall
INWARD_CCW_WALL = 3; // the cell has an inward wall and a clockwise wall
![mz_theta_cells](images/lib3x-mz_theta_cells-2.JPG)
**Since:** 3.0
## Parameters
rows, begining_columns
- `rows` : The number of rings.
- `beginning_number` : The number of cells in the first row.
- `start` : The start point to travel the maze. Default to `[0, 0]`.
- `seed` : The maze is traveling randomly. Use `seed` to initialize the pseudorandom number generator.
## Examples
use <maze/mz_theta_cells.scad>;
use <hull_polyline2d.scad>;
rows = 8;
beginning_number = 8;
cell_width = 10;
wall_thickness = 2;
NO_WALL = 0;
INWARD_WALL = 1;
CCW_WALL = 2;
INWARD_CCW_WALL = 3;
function vt_from_angle(theta, r) = [r * cos(theta), r * sin(theta)];
maze = mz_theta_cells(rows, beginning_number);
// draw cell walls
for(rows = maze) {
for(cell = rows) {
ri = cell[0];
ci = cell[1];
type = cell[2];
thetaStep = 360 / len(maze[ri]);
innerR = (ri + 1) * cell_width;
outerR = (ri + 2) * cell_width;
theta1 = thetaStep * ci;
theta2 = thetaStep * (ci + 1);
innerVt1 = vt_from_angle(theta1, innerR);
innerVt2 = vt_from_angle(theta2, innerR);
outerVt2 = vt_from_angle(theta2, outerR);
if(type == INWARD_WALL || type == INWARD_CCW_WALL) {
hull_polyline2d([innerVt1, innerVt2], width = wall_thickness);
}
if(type == CCW_WALL || type == INWARD_CCW_WALL) {
hull_polyline2d([innerVt2, outerVt2], width = wall_thickness);
}
}
}
// outmost walls
thetaStep = 360 / len(maze[rows - 1]);
r = cell_width * (rows + 1);
for(theta = [0:thetaStep:360 - thetaStep]) {
vt1 = vt_from_angle(theta, r);
vt2 = vt_from_angle(theta + thetaStep, r);
hull_polyline2d([vt1, vt2], width = wall_thickness);
}
![mz_theta_cells](images/lib3x-mz_theta_cells-3.JPG)