1
0
mirror of https://github.com/JustinSDK/dotSCAD.git synced 2025-08-24 15:22:53 +02:00

refactor deps

This commit is contained in:
Justin Lin
2020-01-27 11:49:56 +08:00
parent 53106fe963
commit 2c0c83c669
2 changed files with 75 additions and 71 deletions

View File

@@ -0,0 +1,73 @@
function _bspline_curve_knots(n, degree) =
let(end = n + degree + 1)
[for(i = 0; i < end; i = i + 1) i];
function _bspline_curve_weights(n) = [for(i = 0; i < n; i = i + 1) 1];
function _bspline_curve_ts(ot, degree, knots) =
let(
domain = [degree, len(knots) - 1 - degree],
low = knots[domain[0]],
high = knots[domain[1]],
t = ot * (high - low) + low,
s = _bspline_curve_s(domain[0], domain[1], t, knots)
)
[t, s];
function _bspline_curve_s(s, end, t, knots) =
t >= knots[s] && t <= knots[s+1] ?
s : _bspline_curve_s(s + 1, end, t, knots);
function _bspline_curve_alpha(i, l, t, degree, knots) =
(t - knots[i]) / (knots[i + degree + 1 - l] - knots[i]);
function _bspline_curve_nvi(v, i, l, t, degree, knots) =
let(
alpha = _bspline_curve_alpha(i, l, t, degree, knots)
)
[[for(j = 0; j< 4; j = j + 1) ((1 - alpha) * v[i - 1][j] + alpha * v[i][j])]];
function _bspline_curve_nvl(v, l, s, t, degree, knots, i) =
i == (s - degree - 1 + l) ? v :
let(
leng_v = len(v),
nvi = _bspline_curve_nvi(v, i, l, t, degree, knots),
nv = concat(
[for(j = 0; j < i; j = j + 1) v[j]],
nvi,
[for(j = i + 1; j < leng_v; j = j + 1) v[j]]
)
)
_bspline_curve_nvl(nv, l, s, t, degree, knots, i - 1);
function _bspline_curve_v(v, s, t, degree, knots, l = 1) =
l > degree + 1 ? v :
let(nv = _bspline_curve_nvl(v, l, s, t, degree, knots, s))
_bspline_curve_v(nv, s, t, degree, knots, l + 1);
function _bspline_curve_interpolate(t, degree, points, knots, weights) =
let(
d = len(points[0]),
n = len(points),
kts = is_undef(knots) ? _bspline_curve_knots(n, degree) : knots,
wts = is_undef(weights) ? _bspline_curve_weights(n) : weights,
v = [
for(i = 0; i < n; i = i + 1)
let(p = points[i] * wts[i])
concat([for(j = 0; j < d; j = j + 1) p[j]], [wts[i]])
],
ts = _bspline_curve_ts(t, degree, kts),
s = ts[1],
nv = _bspline_curve_v(v, s, ts[0], degree, kts)
)
[for(i = 0; i < d; i = i + 1) nv[s][i] / nv[s][d]];
function _bspline_curve_impl(t_step, degree, points, knots, weights) =
let(n = len(points))
assert(degree >= 1, "degree cannot be less than 1 (linear)")
assert(degree <= n - 1, "degree must be less than or equal to len(points) - 1")
assert(is_undef(knots) || (len(knots) == n + degree + 1), "len(knots) must be equals to len(points) + degree + 1")
[
for(t = 0; t < 1; t = t + t_step)
_bspline_curve_interpolate(t, degree, points, knots, weights)
];

View File

@@ -8,76 +8,7 @@
*
**/
function _bspline_curve_knots(n, degree) =
let(end = n + degree + 1)
[for(i = 0; i < end; i = i + 1) i];
function _bspline_curve_weights(n) = [for(i = 0; i < n; i = i + 1) 1];
use <_impl/_bspline_curve_impl.scad>;
function _bspline_curve_ts(ot, degree, knots) =
let(
domain = [degree, len(knots) - 1 - degree],
low = knots[domain[0]],
high = knots[domain[1]],
t = ot * (high - low) + low,
s = _bspline_curve_s(domain[0], domain[1], t, knots)
)
[t, s];
function _bspline_curve_s(s, end, t, knots) =
t >= knots[s] && t <= knots[s+1] ?
s : _bspline_curve_s(s + 1, end, t, knots);
function _bspline_curve_alpha(i, l, t, degree, knots) =
(t - knots[i]) / (knots[i + degree + 1 - l] - knots[i]);
function _bspline_curve_nvi(v, i, l, t, degree, knots) =
let(
alpha = _bspline_curve_alpha(i, l, t, degree, knots)
)
[[for(j = 0; j< 4; j = j + 1) ((1 - alpha) * v[i - 1][j] + alpha * v[i][j])]];
function _bspline_curve_nvl(v, l, s, t, degree, knots, i) =
i == (s - degree - 1 + l) ? v :
let(
leng_v = len(v),
nvi = _bspline_curve_nvi(v, i, l, t, degree, knots),
nv = concat(
[for(j = 0; j < i; j = j + 1) v[j]],
nvi,
[for(j = i + 1; j < leng_v; j = j + 1) v[j]]
)
)
_bspline_curve_nvl(nv, l, s, t, degree, knots, i - 1);
function _bspline_curve_v(v, s, t, degree, knots, l = 1) =
l > degree + 1 ? v :
let(nv = _bspline_curve_nvl(v, l, s, t, degree, knots, s))
_bspline_curve_v(nv, s, t, degree, knots, l + 1);
function _bspline_curve_interpolate(t, degree, points, knots, weights) =
let(
d = len(points[0]),
n = len(points),
kts = is_undef(knots) ? _bspline_curve_knots(n, degree) : knots,
wts = is_undef(weights) ? _bspline_curve_weights(n) : weights,
v = [
for(i = 0; i < n; i = i + 1)
let(p = points[i] * wts[i])
concat([for(j = 0; j < d; j = j + 1) p[j]], [wts[i]])
],
ts = _bspline_curve_ts(t, degree, kts),
s = ts[1],
nv = _bspline_curve_v(v, s, ts[0], degree, kts)
)
[for(i = 0; i < d; i = i + 1) nv[s][i] / nv[s][d]];
function bspline_curve(t_step, degree, points, knots, weights) =
let(n = len(points))
assert(degree >= 1, "degree cannot be less than 1 (linear)")
assert(degree <= n - 1, "degree must be less than or equal to len(points) - 1")
assert(is_undef(knots) || (len(knots) == n + degree + 1), "len(knots) must be equals to len(points) + degree + 1")
[
for(t = 0; t < 1; t = t + t_step)
_bspline_curve_interpolate(t, degree, points, knots, weights)
];
_bspline_curve_impl(t_step, degree, points, knots, weights);