1
0
mirror of https://github.com/JustinSDK/dotSCAD.git synced 2025-09-01 02:33:00 +02:00

OpenSCAD prefers clockwise

This commit is contained in:
Justin Lin
2017-05-16 09:47:15 +08:00
parent 44d62f081c
commit 90483efee0
8 changed files with 82 additions and 57 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -12,28 +12,30 @@ Looks like extruding along the path? Yes, it can perform the task; however, it's
You can also view it as a better polyline3d module if you want. If you have only the points of a path, using `polyline3d` or `hull_polyline3d` is a simple solution. If you know the cross-sections along a path, you can use `polysections` to do more.
When using this module, you should use points to represent each cross-section.
When using this module, you should use points to represent each cross-section. The points of your 2D shape should have count-clockwise indexes. For example:
If your 2D shape is not solid, indexes of triangles are required. This module has a built-in index vector suitable for one type of hollow shapes. For example, if you have a cross-section such as:
![polysections](images/lib-polysections-10.JPG)
If your 2D shape is hollow, set the `triangles` parameter to `"HOLLOW"` and index the points as the following:
![polysections](images/lib-polysections-5.JPG)
When `triangles` is `"HOLLOW"`, the above shape will be cut into triangles such as:
You can cut triangles by yourself. For example, the above shape can be cut into triangles such as:
![polysections](images/lib-polysections-6.JPG)
You can cut triangles by yourself, for example, the indexes of the above triangles is:
The indexes of the above triangles is:
[
[0, 3, 4],
[0, 4, 1],
[1, 4, 5],
[1, 5, 2],
[2, 5, 3],
[2, 3, 0]
[0, 4, 3],
[0, 1, 4],
[1, 5, 4],
[1, 2, 5],
[2, 3, 5],
[2, 0, 3]
]
Triangles may be defined in any order.
In this module, triangles may be defined in any order. Of course, [following the preference of OpenSCAD](https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron) is ok.
## Parameters
@@ -44,24 +46,24 @@ Triangles may be defined in any order.
include <rotate_p.scad>;
include <polysections.scad>;
section1 = [
[10, 0, 0],
[15, 10, 0],
[18, 9, 0],
[20, 0, 0]
[20, 0, 0],
[18, 9, 0],
[15, 10, 0],
[10, 0, 0]
];
// spin section1
sections = [
for(i = [0:55])
[
for(p = section1)
let(pt = rotate_p(p, [90, 0, -10 * i]))
[pt[0], pt[1] , pt[2] + i]
]
for(i = [0:55])
[
for(p = section1)
let(pt = rotate_p(p, [90, 0, 10 * i]))
[pt[0], pt[1] , pt[2] + i]
]
];
polysections(sections);
![polysections](images/lib-polysections-7.JPG)
@@ -71,15 +73,15 @@ Triangles may be defined in any order.
section1 = [
// outer
[10, 0, 0],
[15, 10, 0],
[18, 9, 0],
[20, 0, 0],
[20, 0, 0],
[18, 9, 0],
[15, 10, 0],
[10, 0, 0],
// inner
[12, 2, 0],
[15, 7, 0],
[17, 7, 0],
[18, 2, 0]
[18, 2, 0],
[17, 7, 0],
[15, 7, 0],
[12, 2, 0]
];
// spin section1
@@ -87,7 +89,7 @@ Triangles may be defined in any order.
for(i = [0:55])
[
for(p = section1)
let(pt = rotate_p(p, [90, 0, -10 * i]))
let(pt = rotate_p(p, [90, 0, 10 * i]))
[pt[0], pt[1] , pt[2] + i]
]
];
@@ -101,13 +103,13 @@ Triangles may be defined in any order.
section1 = [
// outer
[10, 0, 0],
[30, 0, 0],
[15, 10, 0],
[30, 0, 0],
[10, 0, 0],
// inner
[12, 1, 0],
[26, 1, 0],
[15, 8, 0],
[26, 1, 0],
[12, 1, 0],
];
// spin section1
@@ -115,7 +117,7 @@ Triangles may be defined in any order.
for(i = [0:55])
[
for(p = section1)
let(pt = rotate_p(p, [90, 0, -10 * i]))
let(pt = rotate_p(p, [90, 0, 10 * i]))
[pt[0], pt[1] , pt[2] + i]
]
];
@@ -123,13 +125,13 @@ Triangles may be defined in any order.
polysections(
sections = sections,
triangles = [
[0, 3, 4],
[0, 4, 1],
[1, 4, 5],
[1, 5, 2],
[2, 5, 3],
[2, 3, 0]
]
[0, 3, 1],
[1, 3, 4],
[1, 4, 2],
[2, 4, 5],
[2, 5, 0],
[0, 5, 3]
]
);
![polysections](images/lib-polysections-9.JPG)