mirror of
https://github.com/JustinSDK/dotSCAD.git
synced 2025-08-01 12:30:33 +02:00
add docs
This commit is contained in:
BIN
docs/images/lib3x-sf_solidifyT-1.JPG
Normal file
BIN
docs/images/lib3x-sf_solidifyT-1.JPG
Normal file
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
BIN
docs/images/lib3x-sf_solidifyT-2.JPG
Normal file
BIN
docs/images/lib3x-sf_solidifyT-2.JPG
Normal file
Binary file not shown.
After Width: | Height: | Size: 41 KiB |
BIN
docs/images/lib3x-sf_thickenT-1.JPG
Normal file
BIN
docs/images/lib3x-sf_thickenT-1.JPG
Normal file
Binary file not shown.
After Width: | Height: | Size: 31 KiB |
BIN
docs/images/lib3x-sf_thickenT-2.JPG
Normal file
BIN
docs/images/lib3x-sf_thickenT-2.JPG
Normal file
Binary file not shown.
After Width: | Height: | Size: 45 KiB |
55
docs/lib3x-sf_solidifyT.md
Normal file
55
docs/lib3x-sf_solidifyT.md
Normal file
@@ -0,0 +1,55 @@
|
||||
# sf_solidifyT
|
||||
|
||||
It solidifies two surfaces with triangular mesh.
|
||||
|
||||
**Since:** 3.1
|
||||
|
||||
## Parameters
|
||||
|
||||
- `points1` : A list of `[x, y, z]`s.
|
||||
- `points2` : A list of `[x, y, z]`s.
|
||||
- `triangles` : Determine which points are connected by an edge. All triangles have points in the same direction, counter-clockwise. See examples below.
|
||||
|
||||
## Examples
|
||||
|
||||
use <triangle/tri_delaunay.scad>;
|
||||
use <surface/sf_solidifyT.scad>;
|
||||
|
||||
points = [for(i = [0:50]) rands(-300, 300, 2)];
|
||||
triangles = tri_delaunay(points);
|
||||
|
||||
pts = [for(p = points) [p[0], p[1], rands(100, 150, 1)[0]]];
|
||||
pts2 = [for(p = pts) [p[0], p[1], p[2] - 100]];
|
||||
|
||||
sf_solidifyT(pts, pts2, triangles = triangles);
|
||||
|
||||

|
||||
|
||||
use <triangle/tri_delaunay.scad>;
|
||||
use <surface/sf_solidifyT.scad>;
|
||||
|
||||
thickness = .2;
|
||||
a_step = 10;
|
||||
r_step = 0.2;
|
||||
scale = 100;
|
||||
|
||||
function f(x, y) = (pow(y,2)/pow(2, 2))-(pow(x,2)/pow(2, 2));
|
||||
|
||||
pts2d = [
|
||||
for(a = [a_step:a_step:360])
|
||||
for(r = [r_step:r_step:2])
|
||||
let(
|
||||
x = round(r * cos(a) * 100) / 100,
|
||||
y = round(r * sin(a) * 100) / 100
|
||||
)
|
||||
[x, y]
|
||||
];
|
||||
|
||||
points1 = [for(p = pts2d) scale * [p[0], p[1], f(p[0], p[1])]];
|
||||
points2 = [for(p = points1) [p[0], p[1], p[2] - scale * thickness]];
|
||||
triangles = tri_delaunay(pts2d);
|
||||
|
||||
|
||||
sf_solidifyT(points1, points2, triangles);
|
||||
|
||||

|
65
docs/lib3x-sf_thickenT.md
Normal file
65
docs/lib3x-sf_thickenT.md
Normal file
@@ -0,0 +1,65 @@
|
||||
# sf_thickenT
|
||||
|
||||
It thickens a surface with triangular mesh.
|
||||
|
||||
## Parameters
|
||||
|
||||
- `points` : A list of `[x, y, z]`s.
|
||||
- `thickness` : The depth of the thickening.
|
||||
- `triangles` : Determine which points are connected by an edge. All triangles have points in the same direction, counter-clockwise. If it's ignored, `sf_thickenT` would use `[x, y]` to do Delaunay trianglation.
|
||||
- `direction` : The direction of thickening. It accepts `"BOTH"` (default), `"FORWARD"` or `"BACKWARD"`. Thickening is applied in both directions from the surface, the direction of the surface normals or the opposite direction to the surface normals. It also accept a direction vector `[x, y, z]`. Thickening is only applied in the direction you give.
|
||||
|
||||
## Examples
|
||||
|
||||
use <surface/sf_thickenT.scad>;
|
||||
|
||||
radius = 100;
|
||||
width = 2;
|
||||
thickness = .2;
|
||||
|
||||
a_step = 10;
|
||||
r_step = 0.2;
|
||||
|
||||
function f(x, y) = (pow(y,2)/pow(2, 2))-(pow(x,2)/pow(2, 2));
|
||||
|
||||
points = [
|
||||
for(a = [a_step:a_step:360])
|
||||
for(r = [r_step:r_step:2])
|
||||
let(
|
||||
x = round(r * cos(a) * 100) / 100,
|
||||
y = round(r * sin(a) * 100) / 100
|
||||
)
|
||||
[x, y, f(x, y)]
|
||||
];
|
||||
|
||||
sf_thickenT(points, thickness);
|
||||
|
||||

|
||||
|
||||
use <triangle/tri_delaunay.scad>;
|
||||
use <surface/sf_thickenT.scad>;
|
||||
|
||||
u_step = 10;
|
||||
r_step = 0.2;
|
||||
thickness = .2;
|
||||
|
||||
points = [
|
||||
for(u = [0:u_step:360])
|
||||
for(v = [-1:r_step:1])
|
||||
let(
|
||||
x = (1 + v / 2 * cos(u / 2)) * cos(u),
|
||||
y = (1 + v / 2 * cos(u / 2)) * sin(u),
|
||||
z = v / 2 * sin(u / 2)
|
||||
)
|
||||
[x, y, z]
|
||||
];
|
||||
|
||||
triangles = tri_delaunay([
|
||||
for(u = [0:u_step:360])
|
||||
for(v = [-1:r_step:1])
|
||||
[v, u]
|
||||
]);
|
||||
|
||||
sf_thickenT(points, thickness, triangles);
|
||||
|
||||

|
Reference in New Issue
Block a user