mirror of
https://github.com/JustinSDK/dotSCAD.git
synced 2025-08-06 14:56:47 +02:00
add doc
This commit is contained in:
BIN
docs/images/lib2-bspline_curve-1.JPG
Normal file
BIN
docs/images/lib2-bspline_curve-1.JPG
Normal file
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
BIN
docs/images/lib2-bspline_curve-2.JPG
Normal file
BIN
docs/images/lib2-bspline_curve-2.JPG
Normal file
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
BIN
docs/images/lib2-bspline_curve-3.JPG
Normal file
BIN
docs/images/lib2-bspline_curve-3.JPG
Normal file
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
84
docs/lib2-bspline_curve.md
Normal file
84
docs/lib2-bspline_curve.md
Normal file
@@ -0,0 +1,84 @@
|
||||
# bspline_curve
|
||||
|
||||
[B-spline](https://en.wikipedia.org/wiki/B-spline) interpolation using [de Boor's algorithm](https://en.wikipedia.org/wiki/De_Boor%27s_algorithm). This function returns points of the B-spline path. Combined with the `polyline`, `polyline3d` or `hull_polyline3d` module, you can create a B-spline curve.
|
||||
|
||||
## Parameters
|
||||
|
||||
- `t_step` : The increment amount along the curve in the [0, 1] range.
|
||||
- `degree` : The degree of B-spline. Must be less than or equal to `len(points) - 1`.
|
||||
- `points` : A list of `[x, y]` or `[x, y, z]` control points.
|
||||
- `knots` : The knot vector. It's a non-decreasing sequence with length `len(points) + degree + 1`. If not provided, a uniform knot vector is generated automatically.
|
||||
- `weights` : The weights of control points. If not provided, the weight of each point is 1.
|
||||
|
||||
## Examples
|
||||
|
||||
include <bspline_curve.scad>;
|
||||
|
||||
points = [
|
||||
[-10, 0],
|
||||
[-5, 5],
|
||||
[ 5, -5],
|
||||
[ 10, 0]
|
||||
];
|
||||
|
||||
color("red") for(p = points) {
|
||||
translate(p)
|
||||
sphere(0.5);
|
||||
}
|
||||
|
||||
// knots: [0, 1, 2, 3, 4, 5, 6]
|
||||
// weights: [1, 1, 1, 1]
|
||||
for(p = bspline_curve(0.01, 2, points)) {
|
||||
translate(p)
|
||||
sphere(0.1);
|
||||
}
|
||||
|
||||

|
||||
|
||||
include <bspline_curve.scad>;
|
||||
|
||||
points = [
|
||||
[-10, 0],
|
||||
[-5, 5],
|
||||
[ 5, -5],
|
||||
[ 10, 0]
|
||||
];
|
||||
|
||||
// a non-uniform B-spline curve
|
||||
knots = [0, 1/8, 1/4, 1/2, 3/4, 4/5, 1];
|
||||
|
||||
color("red") for(p = points) {
|
||||
translate(p)
|
||||
sphere(0.5);
|
||||
}
|
||||
|
||||
for(p = bspline_curve(0.01, 2, points, knots)) {
|
||||
translate(p)
|
||||
sphere(0.1);
|
||||
}
|
||||
|
||||

|
||||
|
||||
include <bspline_curve.scad>;
|
||||
|
||||
points = [
|
||||
[-10, 0],
|
||||
[-5, 5],
|
||||
[ 5, -5],
|
||||
[ 10, 0]
|
||||
];
|
||||
|
||||
// For a clamped B-spline curve, the first knot and the last knot must be of multiplicity degree + 1.
|
||||
knots = [0, 0, 0, 1, 2, 2, 2];
|
||||
|
||||
color("red") for(p = points) {
|
||||
translate(p)
|
||||
sphere(0.5);
|
||||
}
|
||||
|
||||
for(p = bspline_curve(0.01, 2, points, knots)) {
|
||||
translate(p)
|
||||
sphere(0.1);
|
||||
}
|
||||
|
||||

|
Reference in New Issue
Block a user