use use use use use use use use hilbert_dragon_low_poly(); module hilbert_dragon_low_poly() { lines = hilbert_curve(); hilbert_path = dedup([each [for(line = lines) line[0]], lines[len(lines) - 1][1]]); smoothed_hilbert_path = bezier_smooth(hilbert_path, 0.48, t_step = 0.2); dragon_body_path = reverse([for(i = [1:len(smoothed_hilbert_path) - 4]) smoothed_hilbert_path[i]]); body_shape = concat( bezier_curve(0.25, [ [30, -35], [16, 0], [4, 13], [3, -5], [0, 26], [-3, -5], [-4, 13], [-16, 0], [-30, -35] ] ), bezier_curve(0.25, [[-22, -35], [-15, -45], [0, -55], [15, -45], [22, -35]] ) ); pts = [for(p = body_shape) p * 0.007]; p = dragon_body_path[0]; path_extrude( pts, [p + [-.25, 0, -.05], each [for(i = [1:len(dragon_body_path) - 1]) dragon_body_path[i]]], scale = 0.9 ); translate([0, 0, -2.81]) scale(0.01) rotate([-55, 0, 90]) dragon_head_low_poly(); translate([0, 0, -0.525]) rotate([0, -7, 0]) rotate(90) ellipse_extrude(0.5, slices = 4, twist = 15) scale(0.9 * 0.007) polygon(body_shape); } function hilbert_curve() = let( axiom = "A", rules = [ ["A", "B-F+CFC+F-D&F^D-F+&&CFC+F+B//"], ["B", "A&F^CFB^F^D^^-F-D^|F^B|FC^F^A//"], ["C", "|D^|F^B-F+C^F^A&&FA&F^C+F+B^F^D//"], ["D", "|CFB-F+B|FA&F^A&&FB-F+B|FC//"] ] ) lsystem3(axiom, rules, 2, 90, 1, 0, [0, 0, 0]);