use ; use ; use ; use ; use ; use ; use ; beginning_radius = 30; height = 200; thickness = 2; fn = 180; amplitude = 20; curve_step = 0.01; sample_scale = 0.04; grid_w = 1; dist = "border"; // [euclidean, manhattan, chebyshev, border] bottom = "YES"; // ["YES", "NO"] epsilon = 0.0000001; worley_vase(beginning_radius, height, thickness, fn, amplitude, curve_step, sample_scale, grid_w, dist, bottom, epsilon); module worley_vase(beginning_radius, height, thickness, fn, amplitude,curve_step, sample_scale, grid_w, dist, bottom, epsilon) { seed = rand() * 1000; section = shape_circle(radius = beginning_radius, $fn = fn); pt = [beginning_radius, 0, 0]; h_s = height / 140; edge_path = bezier_curve(curve_step, [ pt, pt + [15, 0, 20 * h_s], pt + [55, 0, 50 * h_s], pt + [20, 0, 70 * h_s], pt + [5, 0, 80 * h_s], pt + [-5, 0, 100 * h_s], pt + [10, 0, 140 * h_s] ]); sections = path_scaling_sections(section, edge_path); noisy = [ for(section = sections) let(nz = nz_worley3s(section * sample_scale, seed, grid_w, dist)) [ for(i = [0:len(nz) - 1]) let( p = section[i], p2d = [p[0], p[1]], noisyP = p2d + p2d / norm(p2d) * nz[i][3] * amplitude ) [noisyP[0], noisyP[1], p[2]] ] ]; offset_noisy = [ for(section = noisy) let( offset_s = bijection_offset(section, thickness, epsilon) ) [ for(i = [0:len(offset_s) - 1]) [offset_s[i][0], offset_s[i][1], section[i][2]] ] ]; all = [ for(i = [0:len(offset_noisy) - 1]) concat( offset_noisy[i], noisy[i] ) ]; sweep(all, triangles = "HOLLOW"); if(bottom == "YES") { sweep([ for(section = noisy) if(section[0][2] < thickness) section ]); } }