# fibonacci_lattice Creates visually even spacing of n points on the surface of the sphere. Nearest-neighbor points will all be approximately the same distance apart. There're max 21 spirals on the sphere. (It's called "visually even spacing" because only the vertices of the 5 [Platonic solids](https://en.wikipedia.org/wiki/Platonic_solid) can be said to be truly evenly spaced around the surface of a sphere.) **Since:** 2.5 ## Parameters - `n` : The number of points. - `radius` : The sphere radius. Default to 1. - `rt_dir` : `"CT_CLK"` for counterclockwise. `"CLK"` for clockwise. The default value is `"CT_CLK"`. ## Examples use n = 200; radius = 20; pts = fibonacci_lattice(n, radius); for(p = pts) { translate(p) sphere(1); } sphere(radius); ![fibonacci_lattice](images/lib3x-fibonacci_lattice-1.JPG) n = 200; radius = 20; pts = fibonacci_lattice(n, radius); for(p = pts) { translate(p) sphere(1); } sphere(radius * 0.9); spirals = [for(j = [0:20]) [for(i = j; i < len(pts); i = i + 21) pts[i]] ]; for(spiral = spirals) { polyline_join(spiral) sphere(.25); } ![fibonacci_lattice](images/lib3x-fibonacci_lattice-2.JPG)