1
0
mirror of https://github.com/JustinSDK/dotSCAD.git synced 2025-01-17 14:18:13 +01:00
dotSCAD/examples/dragon/hilbert_dragon.scad
2022-06-16 11:13:55 +08:00

145 lines
3.9 KiB
OpenSCAD

use <along_with.scad>
use <bezier_smooth.scad>
use <util/reverse.scad>
use <util/dedup.scad>
use <turtle/lsystem3.scad>
use <curve.scad>
use <dragon_head.scad>
use <dragon_scales.scad>
use <path_extrude.scad>
use <bezier_curve.scad>
hilbert_dragon();
module hilbert_dragon() {
module one_segment(body_r, body_fn, one_scale_data) {
rotate([-90, 0, 0])
dragon_body_scales(body_r, body_fn, one_scale_data);
points = [[0, 0, 0], [0, .1, 1], [0, 1, 1.5]] * 4.5;
path = bezier_curve(0.1, points);
// dorsal fin
translate([0, 3.2, -3])
rotate([-65, 0, 0])
path_extrude([[0, -.25], [0.5, 0], [0, .75], [-0.5, 0]] * 4.5, path, scale = .05);
translate([0, -2.5, 1])
rotate([-10, 0, 0])
scale([1.1, 0.8, 1.25])
sphere(body_r * 1.075, $fn = 8);
}
body_r = 5;
body_fn = 12;
scale_fn = 5;
scale_tilt_a = -3;
lines = hilbert_curve();
hilbert_path = dedup([each [for(line = lines) line[0]], lines[len(lines) - 1][1]]);
smoothed_hilbert_path = bezier_smooth(hilbert_path, 0.45, t_step = 0.15);
dragon_body_path = reverse([for(i = [1:len(smoothed_hilbert_path) - 2]) smoothed_hilbert_path[i]]);
one_body_scale_data = one_body_scale(body_r, body_fn, scale_fn, scale_tilt_a);
along_with(dragon_body_path, scale = [0.425, 0.6, 0.425])
scale(0.035)
one_segment(body_r, body_fn, one_body_scale_data);
// tail
translate([0, -.012, -.54])
scale([0.017, 0.017, 0.025])
rotate([0, 0, -12])
mirror([0, 0, .2])
tail();
translate([.06, 0, -2.4])
scale(0.033)
rotate([0, -15, 0])
dragon_head();
}
module tail() {
$fn = 4;
tail_scales(75, 2.5, 4.25, -4, 1.25);
tail_scales(100, 1.25, 4.5, -7, 1);
tail_scales(110, 1.25, 3, -9, 1);
tail_scales(120, 2.5, 2, -9, 1);
translate([0, 0, -1.6])
rotate([0, -25, 0])
scale([1.3, 1.2, .9])
hair();
module hair() {
tail_hair = [
[3, -1],
[5, -1.5],
[8, -1],
[9.5, 0],
[8, -0.4],
[6.5, -0.3],
[8, 0],
[12, 1.5],
[15, 4],
[17, 10],
[14, 8],
[12, 7],
[9, 6],
[11.5, 10],
[13, 12],
[16, 14],
[12, 13],
[8, 11],
[9, 13],
[4, 9],
[2, 8],
[-1, 3]
];
rotate([-2.5, 0, 0])
translate([-1, 1, 5.5])
scale([.8, 1, 1.3]) {
translate([2, 0, -3])
scale([2, 1, .8])
rotate([-90, 70, 15])
linear_extrude(.75, center = true)
polygon(tail_hair);
scale([.85, .9, .6])
translate([2, 0, -5])
scale([1.75, 1, .8])
rotate([-90, 70, 15]) {
linear_extrude(1.5, scale = 0.5)
polygon(tail_hair);
mirror([0, 0, 1])
linear_extrude(1.5, scale = 0.5)
polygon(tail_hair);
}
scale([.6, .7, .9])
translate([2, 0, -4])
scale([2, 1, .85])
rotate([-90, 65, 15]) {
linear_extrude(3.5, scale = 0.5)
polygon(tail_hair);
mirror([0, 0, 1])
linear_extrude(3.5, scale = 0.5)
polygon(tail_hair);
}
}
}
}
function hilbert_curve() =
let(
axiom = "A",
rules = [
["A", "B-F+CFC+F-D&F^D-F+&&CFC+F+B//"],
["B", "A&F^CFB^F^D^^-F-D^|F^B|FC^F^A//"],
["C", "|D^|F^B-F+C^F^A&&FA&F^C+F+B^F^D//"],
["D", "|CFB-F+B|FA&F^A&&FB-F+B|FC//"]
]
)
lsystem3(axiom, rules, 2, 90, 1, 0, [0, 0, 0]);