mirror of
https://github.com/JustinSDK/dotSCAD.git
synced 2025-01-17 22:28:16 +01:00
132 lines
3.0 KiB
OpenSCAD
132 lines
3.0 KiB
OpenSCAD
use <shape_starburst.scad>;
|
|
|
|
model = "STAR"; // [STAR, BASE, BOTH]
|
|
r1 = 12;
|
|
r2 = 9.5;
|
|
n = 6;
|
|
number_of_stars = 8;
|
|
height = 20;
|
|
thickness = 1;
|
|
spacing = thickness;
|
|
slope = 0.35;
|
|
base_height = height * 1.75;
|
|
|
|
/*
|
|
r1 = 12;
|
|
r2 = 10;
|
|
n = 8;
|
|
number_of_stars = 10;
|
|
height = 20;
|
|
thickness = 1;
|
|
spacing = thickness;
|
|
slope = 0.26;
|
|
*/
|
|
|
|
fidget_star(model, r1, r2, n, number_of_stars, height, thickness, spacing, slope, base_height);
|
|
|
|
module fidget_star(model, r1, r2, n, number_of_stars, height, thickness, spacing, slope, base_height) {
|
|
theta = 180 / n;
|
|
|
|
y = r2 - r2 * cos(theta);
|
|
dr = y / cos(theta) + thickness + spacing;
|
|
pw = pow((r2 + dr) * sin(theta), 2);
|
|
|
|
r_ratio = r1 / r2;
|
|
|
|
module star(r1, r2) {
|
|
polygon(shape_starburst(r1, r2, n));
|
|
}
|
|
|
|
rs2 = [for(i = [0: number_of_stars + 1]) r2 + i * dr];
|
|
rs1 = rs2 * r_ratio;
|
|
|
|
half_height = height / 2;
|
|
|
|
s = [for(i = [1: number_of_stars + 1]) (rs2[i] + slope * half_height) / rs2[i]];
|
|
|
|
module half() {
|
|
translate([0, 0, -half_height]) {
|
|
linear_extrude(half_height, scale = s[0])
|
|
difference() {
|
|
star(r1, r2);
|
|
offset(delta = -thickness)
|
|
star(r1, r2);
|
|
}
|
|
|
|
for(i = [1:number_of_stars - 1]) {
|
|
linear_extrude(half_height, scale = s[i])
|
|
difference() {
|
|
star(rs1[i], rs2[i]);
|
|
offset(delta = -thickness)
|
|
star(rs1[i], rs2[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if(model == "STAR" || model == "BOTH") {
|
|
half();
|
|
mirror([0, 0, 1])
|
|
half();
|
|
}
|
|
// base
|
|
|
|
ring_thickness = thickness * 1.5;
|
|
module base_ring() {
|
|
translate([0, 0, -ring_thickness])
|
|
difference() {
|
|
linear_extrude(ring_thickness, scale = 1.02)
|
|
offset(ring_thickness / 3, $fn = n)
|
|
offset(delta = -thickness)
|
|
star(rs2[number_of_stars] * s[number_of_stars] * r_ratio, rs2[number_of_stars] * s[number_of_stars]);
|
|
//star(rs[n] * s[n] - thickness);
|
|
|
|
linear_extrude(thickness * 4, center = true)
|
|
offset(delta = -ring_thickness)
|
|
star(rs2[number_of_stars] * s[number_of_stars] * r_ratio, rs2[number_of_stars] * s[number_of_stars]);
|
|
//star(rs[n] * s[n] - ring_thickness);
|
|
}
|
|
}
|
|
|
|
if(model == "BASE" || model == "BOTH") {
|
|
color("white") {
|
|
// plate
|
|
translate([0, 0, -half_height])
|
|
linear_extrude(half_height, scale = s[number_of_stars])
|
|
difference() {
|
|
star(rs1[number_of_stars], rs2[number_of_stars]);
|
|
offset(delta = -thickness)
|
|
star(rs1[number_of_stars], rs2[number_of_stars]);
|
|
}
|
|
|
|
// ring
|
|
base_ring();
|
|
mirror([0, 0, 1])
|
|
base_ring();
|
|
|
|
*translate([0, 0, -base_height + ring_thickness])
|
|
mirror([0, 0, 1])
|
|
scale([1, 1, 1.5])
|
|
base_ring();
|
|
|
|
// stick
|
|
d = rs1[number_of_stars] * s[number_of_stars];
|
|
off_h = -base_height + ring_thickness;
|
|
a = 180 / n;
|
|
stick_r = thickness * 5;
|
|
stick_h = base_height - ring_thickness;
|
|
for(i = [0:n - 1]) {
|
|
rotate(360 / n * i)
|
|
translate([d + thickness * 1.25, 0, off_h])
|
|
rotate(a) {
|
|
linear_extrude(stick_h)
|
|
circle(stick_r, $fn = n);
|
|
translate([0, 0, stick_h])
|
|
linear_extrude(ring_thickness, scale = 0.75)
|
|
circle(stick_r, $fn = n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} |