mirror of
https://github.com/Irev-Dev/Round-Anything.git
synced 2025-08-11 02:14:05 +02:00
Major restructuring unifying 2 space indentation and putting each child on new line to be better for git, still need to decise what to do with for loops inside arrays and turnerary opperators
This commit is contained in:
committed by
Kurt Charlie Hutten
parent
4e08261f37
commit
41cfc7c322
7
LICENSE
Normal file
7
LICENSE
Normal file
@@ -0,0 +1,7 @@
|
||||
Copyright 2020 Kurt Hutten
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
@@ -1,8 +1,8 @@
|
||||
// Library: MinkowskiRound.scad
|
||||
// Version: 1.0
|
||||
// Author: IrevDev
|
||||
// Copyright: 2017
|
||||
// License: GPL 3
|
||||
// Copyright: 2020
|
||||
// License: MIT
|
||||
|
||||
/*
|
||||
---Modules
|
||||
@@ -38,10 +38,14 @@ Both this modules do the same thing as minkowskiRound() but focus on either insi
|
||||
//}//--I rendered this out with a $fn=25 and it took more than 12 hours on my computer
|
||||
|
||||
|
||||
|
||||
|
||||
module round2d(OR=3,IR=1){
|
||||
offset(OR)offset(-IR-OR)offset(IR)children();
|
||||
offset(OR){
|
||||
offset(-IR-OR){
|
||||
offset(IR){
|
||||
children();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module minkowskiRound(OR=1,IR=1,enable=1,cubeSize=[500,500,500]){
|
||||
|
303
polyround.scad
303
polyround.scad
@@ -2,8 +2,8 @@
|
||||
// Version: 1.0
|
||||
// Author: IrevDev
|
||||
// Contributors: TLC123
|
||||
// Copyright: 2017
|
||||
// License: GPL 3
|
||||
// Copyright: 2020
|
||||
// License: MIT
|
||||
|
||||
|
||||
|
||||
@@ -15,15 +15,40 @@ module examples(){
|
||||
slotPosition=8;
|
||||
minR=1.5; farcornerR=6;
|
||||
internalR=3;
|
||||
points=[[0,0,farcornerR],[0,height,minR],[slotPosition,height,minR],[slotPosition,height-slotH,internalR],
|
||||
[slotPosition+slotW,height-slotH,internalR],[slotPosition+slotW,height,minR],[width,height,minR],[width,0,minR]];
|
||||
points2=[[0,0,farcornerR],["l",height,minR],[slotPosition,"l",minR],["l",height-slotH,internalR],
|
||||
[slotPosition+slotW,"l",internalR],["l",height,minR],[width,"l",minR],["l",height*0.2,minR],[45,0,minR+5,"ayra"]];//,["l",0,minR]];
|
||||
points=[
|
||||
[0, 0, farcornerR],
|
||||
[0, height, minR],
|
||||
[slotPosition, height, minR],
|
||||
[slotPosition, height-slotH, internalR],
|
||||
[slotPosition+slotW, height-slotH, internalR],
|
||||
[slotPosition+slotW, height, minR],
|
||||
[width, height, minR],
|
||||
[width, 0, minR]
|
||||
];
|
||||
points2=[
|
||||
[0, 0, farcornerR],
|
||||
["l", height, minR],
|
||||
[slotPosition, "l", minR],
|
||||
["l", height-slotH, internalR],
|
||||
[slotPosition+slotW, "l", internalR],
|
||||
["l", height, minR],
|
||||
[width, "l", minR],
|
||||
["l", height*0.2, minR],
|
||||
[45, 0, minR+5, "ayra"]
|
||||
];//,["l",0,minR]];
|
||||
echo(processRadiiPoints(points2));
|
||||
translate([-25,0,0])polygon(polyRound(points,5));
|
||||
%translate([-25,0,0.2])polygon(getpoints(points));//transparent copy of the polgon without rounding
|
||||
translate([-50,0,0])polygon(polyRound(points2,5));
|
||||
%translate([-50,0,0.2])polygon(getpoints(processRadiiPoints(points2)));//transparent copy of the polgon without rounding
|
||||
translate([-25,0,0]){
|
||||
polygon(polyRound(points,5));
|
||||
}
|
||||
%translate([-25,0,0.2]){
|
||||
polygon(getpoints(points));//transparent copy of the polgon without rounding
|
||||
}
|
||||
translate([-50,0,0]){
|
||||
polygon(polyRound(points2,5));
|
||||
}
|
||||
%translate([-50,0,0.2]){
|
||||
polygon(getpoints(processRadiiPoints(points2)));//transparent copy of the polgon without rounding
|
||||
}
|
||||
//Example of features 2
|
||||
// 1 2 3 4 5 6
|
||||
b=[[-4,0,1],[5,3,1.5],[0,7,0.1],[8,7,10],[20,20,0.8],[10,0,10]]; //points
|
||||
@@ -34,44 +59,65 @@ module examples(){
|
||||
// 1 2 3 4 5 6
|
||||
p=[[0,0,1.2],[0,20,1],[15,15,1],[3,10,3],[15,0,1],[6,2,10]];//points
|
||||
a=polyRound(p,5);
|
||||
translate([25,0,0])polygon(a);
|
||||
%translate([25,0,0.2])polygon(getpoints(p));//transparent copy of the polgon without rounding
|
||||
|
||||
translate([25,0,0]){
|
||||
polygon(a);
|
||||
}
|
||||
%translate([25,0,0.2]){
|
||||
polygon(getpoints(p));//transparent copy of the polgon without rounding
|
||||
}
|
||||
//example of radii conflict handling and debuging feature
|
||||
r1a=10; r1b=10;
|
||||
r2a=30; r2b=30;
|
||||
r3a=10; r3b=40;
|
||||
r4a=15; r4b=20;
|
||||
c1=[[0,0,0],[0,20,r1a],[20,20,r1b],[20,0,0]];//both radii fit and don't need to be changed
|
||||
translate([-25,-30,0])polygon(polyRound(c1,8));
|
||||
translate([-25,-30,0]){
|
||||
polygon(polyRound(c1,8));
|
||||
}
|
||||
echo(str("c1 debug= ",polyRound(c1,8,mode=1)," all zeros indicates none of the radii were reduced"));
|
||||
|
||||
c2=[[0,0,0],[0,20,r2a],[20,20,r2b],[20,0,0]];//radii are too large and are reduced to fit
|
||||
translate([0,-30,0])polygon(polyRound(c2,8));
|
||||
translate([0,-30,0]){
|
||||
polygon(polyRound(c2,8));
|
||||
}
|
||||
echo(str("c2 debug= ",polyRound(c2,8,mode=1)," 2nd and 3rd radii reduced by 20mm i.e. from 30 to 10mm radius"));
|
||||
|
||||
c3=[[0,0,0],[0,20,r3a],[20,20,r3b],[20,0,0]];//radii are too large again and are reduced to fit, but keep their ratios
|
||||
translate([25,-30,0])polygon(polyRound(c3,8));
|
||||
translate([25,-30,0]){
|
||||
polygon(polyRound(c3,8));
|
||||
}
|
||||
echo(str("c3 debug= ",polyRound(c3,8,mode=1)," 2nd and 3rd radii reduced by 6 and 24mm respectively"));
|
||||
//resulting in radii of 4 and 16mm,
|
||||
//notice the ratio from the orginal radii stays the same r3a/r3b = 10/40 = 4/16
|
||||
c4=[[0,0,0],[0,20,r4a],[20,20,r4b],[20,0,0]];//radii are too large again but not corrected this time
|
||||
translate([50,-30,0])polygon(polyRound(c4,8,mode=2));//mode 2 = no radii limiting
|
||||
translate([50,-30,0]){
|
||||
polygon(polyRound(c4,8,mode=2));//mode 2 = no radii limiting
|
||||
}
|
||||
|
||||
//example of rounding random points, this has no current use but is a good demonstration
|
||||
random=[for(i=[0:20])[rnd(0,50),rnd(0,50),/*rnd(0,30)*/1000]];
|
||||
R =polyRound(random,7);
|
||||
translate([-25,25,0])polyline(R);
|
||||
translate([-25,25,0]){
|
||||
polyline(R);
|
||||
}
|
||||
|
||||
//example of different modes of the CentreN2PointsArc() function 0=shortest arc, 1=longest arc, 2=CW, 3=CCW
|
||||
p1=[0,5];p2=[10,5];centre=[5,0];
|
||||
translate([60,0,0]){
|
||||
color("green")polygon(CentreN2PointsArc(p1,p2,centre,0,20));//draws the shortest arc
|
||||
color("cyan")polygon(CentreN2PointsArc(p1,p2,centre,1,20));//draws the longest arc
|
||||
color("green"){
|
||||
polygon(CentreN2PointsArc(p1,p2,centre,0,20));//draws the shortest arc
|
||||
}
|
||||
color("cyan"){
|
||||
polygon(CentreN2PointsArc(p1,p2,centre,1,20));//draws the longest arc
|
||||
}
|
||||
}
|
||||
translate([75,0,0]){
|
||||
color("purple")polygon(CentreN2PointsArc(p1,p2,centre,2,20));//draws the arc CW (which happens to be the short arc)
|
||||
color("red")polygon(CentreN2PointsArc(p2,p1,centre,2,20));//draws the arc CW but p1 and p2 swapped order resulting in the long arc being drawn
|
||||
color("purple"){
|
||||
polygon(CentreN2PointsArc(p1,p2,centre,2,20));//draws the arc CW (which happens to be the short arc)
|
||||
}
|
||||
color("red"){
|
||||
polygon(CentreN2PointsArc(p2,p1,centre,2,20));//draws the arc CW but p1 and p2 swapped order resulting in the long arc being drawn
|
||||
}
|
||||
}
|
||||
|
||||
radius=6;
|
||||
@@ -146,10 +192,10 @@ module examples(){
|
||||
|
||||
translate([-30,-90,0])
|
||||
shell2d(-0.5,0,0)polygon(polyRound(b,30));
|
||||
|
||||
}
|
||||
{function polyRound(radiipoints,fn=5,mode=0)=
|
||||
/* Takes a list of radii points of the format [x,y,radius] and rounds each point
|
||||
|
||||
function polyRound(radiipoints,fn=5,mode=0)=
|
||||
/*Takes a list of radii points of the format [x,y,radius] and rounds each point
|
||||
with fn resolution
|
||||
mode=0 - automatic radius limiting - DEFAULT
|
||||
mode=1 - Debug, output radius reduction for automatic radius limiting
|
||||
@@ -159,19 +205,24 @@ module examples(){
|
||||
p=getpoints(radiipoints), //make list of coordinates without radii
|
||||
Lp=len(p),
|
||||
//remove the middle point of any three colinear points
|
||||
newrp=[for(i=[0:len(p)-1]) if(isColinear(p[wrap(i-1,Lp)],p[wrap(i+0,Lp)],p[wrap(i+1,Lp)])==0||p[wrap(i+0,Lp)].z!=0)radiipoints[wrap(i+0,Lp)] ],
|
||||
newrp=[
|
||||
for(i=[0:len(p)-1]) if(isColinear(p[wrap(i-1,Lp)],p[wrap(i+0,Lp)],p[wrap(i+1,Lp)])==0||p[wrap(i+0,Lp)].z!=0)radiipoints[wrap(i+0,Lp)]
|
||||
],
|
||||
newrp2=processRadiiPoints(newrp),
|
||||
temp=[for(i=[0:len(newrp2)-1]) //for each point in the radii array
|
||||
temp=[
|
||||
for(i=[0:len(newrp2)-1]) //for each point in the radii array
|
||||
let(
|
||||
thepoints=[for(j=[-getpoints:getpoints])newrp2[wrap(i+j,len(newrp2))]],//collect 5 radii points
|
||||
temp2=mode==2?round3points(thepoints,fn):round5points(thepoints,fn,mode)
|
||||
)
|
||||
mode==1?temp2:newrp2[i][2]==0?[[newrp2[i][0],newrp2[i][1]]]: //return the original point if the radius is 0
|
||||
mode==1?temp2:newrp2[i][2]==0?
|
||||
[[newrp2[i][0],newrp2[i][1]]]: //return the original point if the radius is 0
|
||||
CentreN2PointsArc(temp2[0],temp2[1],temp2[2],0,fn) //return the arc if everything is normal
|
||||
]
|
||||
)
|
||||
[for (a = temp) for (b = a) b];}//flattern and return the array
|
||||
{function round5points(rp,fn,debug=0)=
|
||||
[for (a = temp) for (b = a) b];//flattern and return the array
|
||||
|
||||
function round5points(rp,fn,debug=0)=
|
||||
rp[2][2]==0&&debug==0?[[rp[2][0],rp[2][1]]]://return the middle point if the radius is 0
|
||||
rp[2][2]==0&&debug==1?0://if debug is enabled and the radius is 0 return 0
|
||||
let(
|
||||
@@ -207,8 +258,9 @@ module examples(){
|
||||
//determine the direction of rotation
|
||||
debug==1?//if debug in disabled return arc (default)
|
||||
(newR-r[1]):
|
||||
[t23,t34,cen];}
|
||||
{function round3points(rp,fn)=
|
||||
[t23,t34,cen];
|
||||
|
||||
function round3points(rp,fn)=
|
||||
rp[1][2]==0?[[rp[1][0],rp[1][1]]]://return the middle point if the radius is 0
|
||||
let(
|
||||
p=getpoints(rp), //get list of points
|
||||
@@ -228,8 +280,9 @@ module examples(){
|
||||
angCen=getAngle(tmid,p[1]),//angle from point 2 to circle centre
|
||||
cen=[p[1][0]-cos(angCen)*circD,p[1][1]-sin(angCen)*circD] //circle center by offseting from point 2
|
||||
)
|
||||
[t12,t23,cen];}
|
||||
{function parallelFollow(rp,thick=4,minR=1,mode=1)=
|
||||
[t12,t23,cen];
|
||||
|
||||
function parallelFollow(rp,thick=4,minR=1,mode=1)=
|
||||
//rp[1][2]==0?[rp[1][0],rp[1][1],0]://return the middle point if the radius is 0
|
||||
thick==0?[rp[1][0],rp[1][1],0]://return the middle point if the radius is 0
|
||||
let(
|
||||
@@ -252,17 +305,20 @@ module examples(){
|
||||
cen=[p[1][0]-cos(angCen)*circD,p[1][1]-sin(angCen)*circD],//circle center by offseting from point 2
|
||||
outR=max(minR,rp[1][2]-thick*sgn*mode) //ensures radii are never too small.
|
||||
)
|
||||
concat(cen,outR);}
|
||||
{function findPoint(ang1,refpoint1,ang2,refpoint2,r=0)=
|
||||
concat(cen,outR);
|
||||
|
||||
function findPoint(ang1,refpoint1,ang2,refpoint2,r=0)=
|
||||
let(
|
||||
m1=tan(ang1),c1=refpoint1.y-m1*refpoint1.x,
|
||||
m2=tan(ang2),c2=refpoint2.y-m2*refpoint2.x,
|
||||
m1=tan(ang1),
|
||||
c1=refpoint1.y-m1*refpoint1.x,
|
||||
m2=tan(ang2),
|
||||
c2=refpoint2.y-m2*refpoint2.x,
|
||||
outputX=(c2-c1)/(m1-m2),
|
||||
outputY=m1*outputX+c1
|
||||
)
|
||||
[outputX,outputY,r];
|
||||
}
|
||||
{function RailCustomiser(rp,o1=0,o2,mode=0,minR=0,a1,a2)=
|
||||
|
||||
function RailCustomiser(rp,o1=0,o2,mode=0,minR=0,a1,a2)=
|
||||
/*This function takes a series of radii points and plots points to run along side at a constanit distance, think of it as offset but for line instead of a polygon
|
||||
rp=radii points, o1&o2=offset 1&2,minR=min radius, a1&2=angle 1&2
|
||||
mode=1 - include endpoints a1&2 are relative to the angle of the last two points and equal 90deg if not defined
|
||||
@@ -298,16 +354,16 @@ module examples(){
|
||||
OffLn2=[for(i=[0:Lrp3]) o2==0?rp[i+1]:parallelFollow([rp[i],rp[i+1],rp[i+2]],o2b,minR,mode=CWorCCW2)],
|
||||
Rp1=abs(rp[0].z),
|
||||
Rp2=abs(rp[Lrp-1].z),
|
||||
endP1a=findPoint(getAngle(rp[0],rp[1]),OffLn1[0],a1,rp[0],Rp1),
|
||||
endP1b=findPoint(getAngle(rp[Lrp-1],rp[Lrp-2]),OffLn1[len(OffLn1)-1],a2,rp[Lrp-1],Rp2),
|
||||
endP2a=findPoint(getAngle(rp[0],rp[1]),OffLn2[0],a1,rp[0],Rp1),
|
||||
endP2b=findPoint(getAngle(rp[Lrp-1],rp[Lrp-2]),OffLn2[len(OffLn1)-1],a2,rp[Lrp-1],Rp2),
|
||||
endP1a=findPoint(getAngle(rp[0],rp[1]), OffLn1[0], a1,rp[0], Rp1),
|
||||
endP1b=findPoint(getAngle(rp[Lrp-1],rp[Lrp-2]), OffLn1[len(OffLn1)-1], a2,rp[Lrp-1], Rp2),
|
||||
endP2a=findPoint(getAngle(rp[0],rp[1]), OffLn2[0], a1,rp[0], Rp1),
|
||||
endP2b=findPoint(getAngle(rp[Lrp-1],rp[Lrp-2]), OffLn2[len(OffLn1)-1], a2,rp[Lrp-1], Rp2),
|
||||
absEnda=getAngle(endP1a,endP2a),
|
||||
absEndb=getAngle(endP1b,endP2b),
|
||||
negRP1a=[cos(absEnda)*rp[0].z*10+endP1a.x,sin(absEnda)*rp[0].z*10+endP1a.y,0.0],
|
||||
negRP2a=[cos(absEnda)*-rp[0].z*10+endP2a.x,sin(absEnda)*-rp[0].z*10+endP2a.y,0.0],
|
||||
negRP1b=[cos(absEndb)*rp[Lrp-1].z*10+endP1b.x,sin(absEndb)*rp[Lrp-1].z*10+endP1b.y,0.0],
|
||||
negRP2b=[cos(absEndb)*-rp[Lrp-1].z*10+endP2b.x,sin(absEndb)*-rp[Lrp-1].z*10+endP2b.y,0.0],
|
||||
negRP1a=[cos(absEnda)*rp[0].z*10+endP1a.x, sin(absEnda)*rp[0].z*10+endP1a.y, 0.0],
|
||||
negRP2a=[cos(absEnda)*-rp[0].z*10+endP2a.x, sin(absEnda)*-rp[0].z*10+endP2a.y, 0.0],
|
||||
negRP1b=[cos(absEndb)*rp[Lrp-1].z*10+endP1b.x, sin(absEndb)*rp[Lrp-1].z*10+endP1b.y, 0.0],
|
||||
negRP2b=[cos(absEndb)*-rp[Lrp-1].z*10+endP2b.x, sin(absEndb)*-rp[Lrp-1].z*10+endP2b.y, 0.0],
|
||||
OffLn1b=(mode==0||mode==2)&&rp[0].z<0&&rp[Lrp-1].z<0?
|
||||
concat([negRP1a],[endP1a],OffLn1,[endP1b],[negRP1b])
|
||||
:(mode==0||mode==2)&&rp[0].z<0?
|
||||
@@ -317,8 +373,7 @@ module examples(){
|
||||
:mode==0||mode==2?
|
||||
concat([endP1a],OffLn1,[endP1b])
|
||||
:
|
||||
OffLn1
|
||||
,
|
||||
OffLn1,
|
||||
OffLn2b=(mode==0||mode==2)&&rp[0].z<0&&rp[Lrp-1].z<0?
|
||||
concat([negRP2a],[endP2a],OffLn2,[endP2b],[negRP2b])
|
||||
:(mode==0||mode==2)&&rp[0].z<0?
|
||||
@@ -330,18 +385,22 @@ module examples(){
|
||||
:
|
||||
OffLn2
|
||||
)//end of let()
|
||||
o2undef==1?OffLn1b:concat(OffLn2b,revList(OffLn1b));}
|
||||
{function revList(list)=//reverse list
|
||||
o2undef==1?OffLn1b:concat(OffLn2b,revList(OffLn1b));
|
||||
|
||||
function revList(list)=//reverse list
|
||||
let(Llist=len(list)-1)
|
||||
[for(i=[0:Llist]) list[Llist-i]];
|
||||
}
|
||||
{function CWorCCW(p)=
|
||||
|
||||
function CWorCCW(p)=
|
||||
let(
|
||||
Lp=len(p),
|
||||
e=[for(i=[0:Lp-1]) (p[wrap(i+0,Lp)].x-p[wrap(i+1,Lp)].x)*(p[wrap(i+0,Lp)].y+p[wrap(i+1,Lp)].y)]
|
||||
e=[for(i=[0:Lp-1])
|
||||
(p[wrap(i+0,Lp)].x-p[wrap(i+1,Lp)].x)*(p[wrap(i+0,Lp)].y+p[wrap(i+1,Lp)].y)
|
||||
]
|
||||
)
|
||||
sign(sum(e));}
|
||||
{function CentreN2PointsArc(p1,p2,cen,mode=0,fn)=
|
||||
sign(sum(e));
|
||||
|
||||
function CentreN2PointsArc(p1,p2,cen,mode=0,fn)=
|
||||
/* This function plots an arc from p1 to p2 with fn increments using the cen as the centre of the arc.
|
||||
the mode determines how the arc is plotted
|
||||
mode==0, shortest arc possible
|
||||
@@ -365,58 +424,108 @@ module examples(){
|
||||
r=pointDist(p1,cen),//determine the radius
|
||||
p1Angle=getAngle(cen,p1) //angle of line 1
|
||||
)
|
||||
[for(i=[0:fn]) [cos(p1Angle+(arcAngle/fn)*i*CWorCCW)*r+cen[0],sin(p1Angle+(arcAngle/fn)*i*CWorCCW)*r+cen[1]]];}
|
||||
{function moveRadiiPoints(rp,tran=[0,0],rot=0)=
|
||||
[for(i=[0:fn]) [cos(p1Angle+(arcAngle/fn)*i*CWorCCW)*r+cen[0],sin(p1Angle+(arcAngle/fn)*i*CWorCCW)*r+cen[1]]];
|
||||
|
||||
function moveRadiiPoints(rp,tran=[0,0],rot=0)=
|
||||
[for(i=rp)
|
||||
let(
|
||||
a=getAngle([0,0],[i.x,i.y]),//get the angle of the this point
|
||||
h=pointDist([0,0],[i.x,i.y]) //get the hypotenuse/radius
|
||||
)
|
||||
[h*cos(a+rot)+tran.x,h*sin(a+rot)+tran.y,i.z]//calculate the point's new position
|
||||
];}
|
||||
];
|
||||
|
||||
module round2d(OR=3,IR=1){
|
||||
offset(OR)offset(-IR-OR)offset(IR)children();
|
||||
offset(OR){
|
||||
offset(-IR-OR){
|
||||
offset(IR){
|
||||
children();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module shell2d(o1,OR=0,IR=0,o2=0){
|
||||
difference(){
|
||||
round2d(OR,IR)offset(max(o1,o2))children(0);//original 1st child forms the outside of the shell
|
||||
round2d(IR,OR)difference(){//round the inside cutout
|
||||
offset(min(o1,o2))children(0);//shrink the 1st child to form the inside of the shell
|
||||
if($children>1)for(i=[1:$children-1])children(i);//second child and onwards is used to add material to inside of the shell
|
||||
round2d(OR,IR){
|
||||
offset(max(o1,o2)){
|
||||
children(0);//original 1st child forms the outside of the shell
|
||||
}
|
||||
}
|
||||
round2d(IR,OR){
|
||||
difference(){//round the inside cutout
|
||||
offset(min(o1,o2)){
|
||||
children(0);//shrink the 1st child to form the inside of the shell
|
||||
}
|
||||
if($children>1){
|
||||
for(i=[1:$children-1]){
|
||||
children(i);//second child and onwards is used to add material to inside of the shell
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module internalSq(size,r,center=0){
|
||||
tran=center==1?[0,0]:size/2;
|
||||
translate(tran){
|
||||
square(size,true);
|
||||
offs=sin(45)*r;
|
||||
for(i=[-1,1],j=[-1,1])translate([(size.x/2-offs)*i,(size.y/2-offs)*j])circle(r);
|
||||
for(i=[-1,1],j=[-1,1]){
|
||||
translate([(size.x/2-offs)*i,(size.y/2-offs)*j])circle(r);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module r_extrude(ln,r1=0,r2=0,fn=30){
|
||||
n1=sign(r1);n2=sign(r2);
|
||||
r1=abs(r1);r2=abs(r2);
|
||||
translate([0,0,r1])linear_extrude(ln-r1-r2)children();
|
||||
translate([0,0,r1]){
|
||||
linear_extrude(ln-r1-r2){
|
||||
children();
|
||||
}
|
||||
}
|
||||
for(i=[0:1/fn:1]){
|
||||
translate([0,0,i*r1])linear_extrude(r1/fn)offset(n1*sqrt(sq(r1)-sq(r1-i*r1))-n1*r1)children();
|
||||
translate([0,0,ln-r2+i*r2])linear_extrude(r2/fn)offset(n2*sqrt(sq(r2)-sq(i*r2))-n2*r2)children();
|
||||
translate([0,0,i*r1]){
|
||||
linear_extrude(r1/fn){
|
||||
offset(n1*sqrt(sq(r1)-sq(r1-i*r1))-n1*r1){
|
||||
children();
|
||||
}
|
||||
}
|
||||
}
|
||||
translate([0,0,ln-r2+i*r2]){
|
||||
linear_extrude(r2/fn){
|
||||
offset(n2*sqrt(sq(r2)-sq(i*r2))-n2*r2){
|
||||
children();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
{function mirrorPoints(b,rot=0,atten=[0,0])= //mirrors a list of points about Y, ignoring the first and last points and returning them in reverse order for use with polygon or polyRound
|
||||
|
||||
function mirrorPoints(b,rot=0,atten=[0,0])= //mirrors a list of points about Y, ignoring the first and last points and returning them in reverse order for use with polygon or polyRound
|
||||
let(
|
||||
a=moveRadiiPoints(b,[0,0],-rot),
|
||||
temp3=[for(i=[0+atten[0]:len(a)-1-atten[1]]) [a[i][0],-a[i][1],a[i][2]]],
|
||||
temp3=[for(i=[0+atten[0]:len(a)-1-atten[1]])
|
||||
[a[i][0],-a[i][1],a[i][2]]
|
||||
],
|
||||
temp=moveRadiiPoints(temp3,[0,0],rot),
|
||||
temp2=revList(temp3)
|
||||
)
|
||||
concat(b,temp2);}
|
||||
concat(b,temp2);
|
||||
|
||||
function processRadiiPoints(rp)=
|
||||
[for(i=[0:len(rp)-1]) processRadiiPoints2(rp,i)];
|
||||
[for(i=[0:len(rp)-1])
|
||||
processRadiiPoints2(rp,i)
|
||||
];
|
||||
|
||||
function processRadiiPoints2(list,end=0,idx=0,result=0)=
|
||||
idx>=end+1?result:processRadiiPoints2(list,end,idx+1,relationalRadiiPoints(result,list[idx]));
|
||||
idx>=end+1?result:
|
||||
processRadiiPoints2(list,end,idx+1,relationalRadiiPoints(result,list[idx]));
|
||||
|
||||
function cosineRuleBside(a,c,C)=c*cos(C)-sqrt(sq(a)+sq(c)+sq(cos(C))-sq(c));
|
||||
|
||||
function absArelR(po,pn)=
|
||||
let(
|
||||
th2=atan(po[1]/po[0]),
|
||||
@@ -424,6 +533,7 @@ function absArelR(po,pn)=
|
||||
r3=cosineRuleBside(r2,pn[1],th2-pn[0])
|
||||
)
|
||||
[cos(pn[0])*r3,sin(pn[0])*r3,pn[2]];
|
||||
|
||||
function relationalRadiiPoints(po,pi)=
|
||||
let(
|
||||
p0=pi[0],
|
||||
@@ -500,37 +610,54 @@ function relationalRadiiPoints(po,pi)=
|
||||
:[po[0]+pn[0],pn[1],pn[2]]//rel x, abs y
|
||||
)
|
||||
temp;
|
||||
{function invtan(run,rise)=
|
||||
|
||||
function invtan(run,rise)=
|
||||
let(a=abs(atan(rise/run)))
|
||||
rise==0&&run>0?0:rise>0&&run>0?a:rise>0&&run==0?90:rise>0&&run<0?180-a:rise==0&&run<0?180:rise<0&&run<0?a+180:rise<0&&run==0?270:rise<0&&run>0?360-a:"error";}
|
||||
{function cosineRuleAngle(p1,p2,p3)=
|
||||
rise==0&&run>0?
|
||||
0:rise>0&&run>0?
|
||||
a:rise>0&&run==0?
|
||||
90:rise>0&&run<0?
|
||||
180-a:rise==0&&run<0?
|
||||
180:rise<0&&run<0?
|
||||
a+180:rise<0&&run==0?
|
||||
270:rise<0&&run>0?
|
||||
360-a:"error";
|
||||
|
||||
function cosineRuleAngle(p1,p2,p3)=
|
||||
let(
|
||||
p12=abs(pointDist(p1,p2)),
|
||||
p13=abs(pointDist(p1,p3)),
|
||||
p23=abs(pointDist(p2,p3))
|
||||
)
|
||||
acos((sq(p23)+sq(p12)-sq(p13))/(2*p23*p12));}
|
||||
{function sum(list, idx = 0, result = 0) =
|
||||
idx >= len(list) ? result : sum(list, idx + 1, result + list[idx]);}
|
||||
acos((sq(p23)+sq(p12)-sq(p13))/(2*p23*p12));
|
||||
|
||||
function sum(list, idx = 0, result = 0) =
|
||||
idx >= len(list) ? result : sum(list, idx + 1, result + list[idx]);
|
||||
|
||||
function sq(x)=x*x;
|
||||
function getGradient(p1,p2)=(p2.y-p1.y)/(p2.x-p1.x);
|
||||
function getAngle(p1,p2)=p1==p2?0:invtan(p2[0]-p1[0],p2[1]-p1[1]);
|
||||
function getMidpoint(p1,p2)=[(p1[0]+p2[0])/2,(p1[1]+p2[1])/2]; //returns the midpoint of two points
|
||||
function pointDist(p1,p2)=sqrt(abs(sq(p1[0]-p2[0])+sq(p1[1]-p2[1]))); //returns the distance between two points
|
||||
function isColinear(p1,p2,p3)=getGradient(p1,p2)==getGradient(p2,p3)?1:0;//return 1 if 3 points are colinear
|
||||
module polyline(p) {for(i=[0:max(0,len(p)-1)])line(p[i],p[wrap(i+1,len(p) )]);
|
||||
module polyline(p) {
|
||||
for(i=[0:max(0,len(p)-1)]){
|
||||
line(p[i],p[wrap(i+1,len(p) )]);
|
||||
}
|
||||
} // polyline plotter
|
||||
module line(p1, p2 ,width=0.3) { // single line plotter
|
||||
hull() {
|
||||
translate(p1) circle(width);
|
||||
translate(p2) circle(width);
|
||||
translate(p1){
|
||||
circle(width);
|
||||
}
|
||||
translate(p2){
|
||||
circle(width);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function getpoints(p)=[for(i=[0:len(p)-1])[p[i].x,p[i].y]];// gets [x,y]list of[x,y,r]list
|
||||
function wrap(x,x_max=1,x_min=0) = (((x - x_min) % (x_max - x_min)) + (x_max - x_min)) % (x_max - x_min) + x_min; // wraps numbers inside boundaries
|
||||
{function rnd(a = 1, b = 0, s = []) =
|
||||
function rnd(a = 1, b = 0, s = []) =
|
||||
s == [] ?
|
||||
(rands(min(a, b), max( a, b), 1)[0])
|
||||
:
|
||||
(rands(min(a, b), max(a, b), 1, s)[0])
|
||||
;} // nice rands wrapper
|
||||
(rands(min(a, b), max( a, b), 1)[0]):(rands(min(a, b), max(a, b), 1, s)[0]); // nice rands wrapper
|
Reference in New Issue
Block a user