1
0
mirror of https://github.com/Irev-Dev/Round-Anything.git synced 2025-01-16 18:48:14 +01:00
round-anything/unionRoundMask.scad

180 lines
5.6 KiB
OpenSCAD

////////////////////////////////////////////////////////
/*
unionRound() 1.0 Module by Torleif Ceder - TLC123 late summer 2021
Pretty fast Union with radius, But limited to a subset of cases
Usage
unionRound( radius , detail )
{
YourObject1();
YourObject2();
}
unionRoundMask (r, detail , epsilon ,showMask )
{
YourObject1();
YourObject2();
YourMask();
YourMask();
// ...
// ...
// ...
}
limitations:
0. Only really fast when boolean operands are convex,
Minkowski is fast in that case.
1. Boolean operands may be concave but can only touch
in a single convex area
2. Radius is of elliptic type and is only approximate r
were operand intersect at perpendicular angle.
*/
////////////////////////////////////////////////////////
// Demo code
demo= false;
if (demo)
unionRoundMask( r=1.5 , detail= 5 , q=70, includeOperands = true) {
cube([10,10,2],true);
rotate([20,-10,0])cylinder(5,1,1,$fn=12);
translate([0,0,1.5])cube([1.5,10,3],center=true); //mask
rotate(90)
translate([0,0,1.5])cube([3,10,3],center=true); //mask
}
// end of demo code
//
module unionRoundMask(r=1, detail = 5,q=70, epsilon = 1e-6, showMask = false, includeOperands = true) {
//automask if none
if($children <=2){
unionRoundMask(r,detail,q,epsilon,showMask, includeOperands)
{
children(0);
children(1);
clad(max(r),q) intersection(){
children(0);
children(1);
}
}
}
else {
union() {
if(includeOperands){
children(0);
children(1);
}
if (showMask && $children > 2) %
for (i = [2: max(2, $children - 1)]) children(i);
if ($children > 2)
for (i = [2: max(2, $children - 1)]) {
intersection() {
children(i);
unionRound(r, detail,q, epsilon,includeOperands) {
intersection() {
children(0);
children(i); // mask
}
intersection() {
children(1);
children(i); // mask
}
}
}
}
}
}
}
module unionRound(r=1, detail = 5,q=70, epsilon = 1e-6, includeOperands=true) {
if(includeOperands){
children(0);
children(1);
}
step = 90 / detail;
rx=is_list(r)?r[1]:r;
ry=is_list(r)?r[0]:r;
union()for (i = [0: detail-1]) {
{
x = rx - sin(i * step ) * rx;
y = ry - cos(i * step ) * ry;
xi = rx - sin((i * step + step) ) * rx;
yi = ry - cos((i * step + step) ) * ry;
// color(rands(0, 1, 3, i))
hull() {
intersection() {
// shell(epsilon)
clad(x,q) children(0);
// shell(epsilon)
clad(y,q) children(1);
}
intersection() {
// shell(epsilon)
clad(xi,q) children(0);
// shell(epsilon)
clad(yi,q) children(1);
}
}
}
}
}
// prototype module slow maybe on concave feature
module intersectionRound(r, q=70, epsilon = 1e-6,showOperands = true) {
%if (showOperands){children(0);
children(1);}
clad(r,q) inset(r,q)
hull()intersection() {
children(0);
children(1);
}
}
// unionRound helper expand by r
module clad(r,q=70) {
minkowski() {
children();
// icosphere(r,2);
isosphere(r,q);
}
}
// unionRound helper
module shell(r,q=70) {
difference() {
clad(r,q) children();
children();
}
}
// inset 3d "negative offset", optimally on convex hull
// else jagged inner corners by q quality factor
module inset(r,q=20){
a= generatepoints(q)*r;
//#children();
intersection_for(t=a){
translate(t ) children();
}
}
/*
// The following is a sphere with some equidistant properties.
// Not strictly necessary
Kogan, Jonathan (2017) "A New Computationally Efficient Method for Spacing n Points on a Sphere," Rose-Hulman Undergraduate Mathematics Journal: Vol. 18 : Iss. 2 , Article 5.
Available at: https://scholar.rose-hulman.edu/rhumj/vol18/iss2/5 */
function sphericalcoordinate(x,y)= [cos(x )*cos(y ), sin(x )*cos(y ), sin(y )];
function NX(n=70,x)=
let(toDeg=57.2958,PI=acos(-1)/toDeg,
start=(-1.+1./(n-1.)),increment=(2.-2./(n-1.))/(n-1.) )
[ for (j= [0:n-1])let (s=start+j*increment )
sphericalcoordinate( s*x*toDeg, PI/2.* sign(s)*(1.-sqrt(1.-abs(s)))*toDeg)];
function generatepoints(n=70)= NX(n,0.1+1.2*n);
module isosphere(r,q=70){
a= generatepoints(q);
scale(r)hull()polyhedron(a,[[for(i=[0:len(a)-1])i]]);
}