prettymaps/README.md
Marcelo de Oliveira Rosa Prates c32b3019ad
Update README.md
2021-10-01 18:49:54 -03:00

99 lines
4.2 KiB
Markdown

# prettymaps
A minimal Python library to draw customized maps from OpenStreetMap data.
Based on [osmnx](https://github.com/gboeing/osmnx), [matplotlib](https://matplotlib.org/), [shapely](https://shapely.readthedocs.io/en/stable/index.html) and [vsketch](https://github.com/abey79/vsketch) libraries.
## Important:
<a href='https://ko-fi.com/marceloprates_' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://cdn.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
- I've made the `plot` function print by default a message in the corner containing the [mandatory OpenStreetMap credit](https://www.openstreetmap.org/copyright) and the link to this repository. Please keep it.
- You can make commercial use of `prettymaps` drawings, but I ask that you credit OpenStreetMaps and myself.
- Share your creations on the [prettymaps subreddit](https://www.reddit.com/r/prettymaps_/)
## As seen on [Hacker News](https://web.archive.org/web/20210825160918/https://news.ycombinator.com/news):
![](prints/hackernews-prettymaps.png)
## Read the [docs](https://prettymaps.readthedocs.io/en/latest/prettymaps.html#module-prettymaps)
## Google Colaboratory Demo
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/marceloprates/prettymaps/blob/master/notebooks/examples.ipynb)
## Installation
Install with
```
$ pip install prettymaps
```
## Usage example (For more examples, see [this Jupyter Notebook](https://nbviewer.jupyter.org/github/marceloprates/prettymaps/blob/main/notebooks/examples.ipynb)):
```python
# Init matplotlib figure
fig, ax = plt.subplots(figsize = (12, 12), constrained_layout = True)
backup = plot(
# Address:
'Praça Ferreira do Amaral, Macau',
# Plot geometries in a circle of radius:
radius = 1100,
# Matplotlib axis
ax = ax,
# Which OpenStreetMap layers to plot and their parameters:
layers = {
# Perimeter (in this case, a circle)
'perimeter': {},
# Streets and their widths
'streets': {
'width': {
'motorway': 5,
'trunk': 5,
'primary': 4.5,
'secondary': 4,
'tertiary': 3.5,
'residential': 3,
'service': 2,
'unclassified': 2,
'pedestrian': 2,
'footway': 1,
}
},
# Other layers:
# Specify a name (for example, 'building') and which OpenStreetMap tags to fetch
'building': {'tags': {'building': True, 'landuse': 'construction'}, 'union': False},
'water': {'tags': {'natural': ['water', 'bay']}},
'green': {'tags': {'landuse': 'grass', 'natural': ['island', 'wood'], 'leisure': 'park'}},
'forest': {'tags': {'landuse': 'forest'}},
'parking': {'tags': {'amenity': 'parking', 'highway': 'pedestrian', 'man_made': 'pier'}}
},
# drawing_kwargs:
# Reference a name previously defined in the 'layers' argument and specify matplotlib parameters to draw it
drawing_kwargs = {
'background': {'fc': '#F2F4CB', 'ec': '#dadbc1', 'hatch': 'ooo...', 'zorder': -1},
'perimeter': {'fc': '#F2F4CB', 'ec': '#dadbc1', 'lw': 0, 'hatch': 'ooo...', 'zorder': 0},
'green': {'fc': '#D0F1BF', 'ec': '#2F3737', 'lw': 1, 'zorder': 1},
'forest': {'fc': '#64B96A', 'ec': '#2F3737', 'lw': 1, 'zorder': 1},
'water': {'fc': '#a1e3ff', 'ec': '#2F3737', 'hatch': 'ooo...', 'hatch_c': '#85c9e6', 'lw': 1, 'zorder': 2},
'parking': {'fc': '#F2F4CB', 'ec': '#2F3737', 'lw': 1, 'zorder': 3},
'streets': {'fc': '#2F3737', 'ec': '#475657', 'alpha': 1, 'lw': 0, 'zorder': 3},
'building': {'palette': ['#FFC857', '#E9724C', '#C5283D'], 'ec': '#2F3737', 'lw': .5, 'zorder': 4},
}
)
```
![](prints/macao.png)
## Gallery:
### Barcelona:
![](prints/barcelona.png)
### Heerhugowaard:
![](prints/heerhugowaard.png)
### Barra da Tijuca:
![](prints/tijuca.png)
### Porto Alegre:
![](prints/bomfim-farroupilha-cidadebaixa.png)