1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-31 12:01:54 +02:00

Automated build

This commit is contained in:
Bezierinfo CI
2021-06-05 23:23:51 +00:00
parent 6269b502ed
commit 21c18bd570
13 changed files with 85 additions and 49 deletions

View File

@@ -38,7 +38,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-04-19T18:35:47+00:00" />
<meta property="og:updated_time" content="2021-06-05T23:23:15+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -8789,7 +8789,7 @@ for p = 1 to points.length-3 (inclusive):
P = (1, 0)
1
P = (1, c)
P = (1, k)
2
P = P + k · (sin(θ), -cos(θ))
3 4
@@ -8798,7 +8798,7 @@ for p = 1 to points.length-3 (inclusive):
-->
<img
class="LaTeX SVG"
src="./images/chapters/circles_cubic/fe6cc524978eaa4f35d8de32c3b9ad94.svg"
src="./images/chapters/circles_cubic/9054528132317434ae2c0be27572d86b.svg"
width="208px"
height="85px"
loading="lazy"
@@ -8806,9 +8806,9 @@ for p = 1 to points.length-3 (inclusive):
<p>
Only P<sub>3</sub> isn't quite straight-forward here, and its description is based on the fact that the triangle (origin, P<sub>4</sub>,
P<sub>3</sub>) is a right angled triangle, with the distance between the origin and P<sub>4</sub> being 1 (because we're working with a
unit circle), and the distance between P<sub>4</sub> and P<sub>3</sub> being _c , so that we can represent P<sub>3</sub> as "The point
P<sub>4</sub> plus the vector from the origin to P<sub>4</sub> but then rotated a quarter circle, counter-clockwise, and scaled by
<em>c</em>".
unit circle), and the distance between P<sub>4</sub> and P<sub>3</sub> being <em>k</em>, so that we can represent P<sub>3</sub> as "The
point P<sub>4</sub> plus the vector from the origin to P<sub>4</sub> but then rotated a quarter circle, counter-clockwise, and scaled by
<em>k</em>".
</p>
<p>
With that, we can determine the <em>y</em>-coordinates for A, B, e<sub>1</sub>, and e<sub>2</sub>, after which we have all the information
@@ -8866,7 +8866,7 @@ for p = 1 to points.length-3 (inclusive):
<!--
\setmainfont[Ligatures=TeX]TeX Gyre Pagella \setmathfontTeX Gyre Pagella Math
3c + 4sin(θ)) - 3k · cos(θ) θ
3k + 4sin(θ)) - 3k · cos(θ) θ
────────────────────────────= sin(─)
8 2
╭ θ ╮
@@ -8891,8 +8891,8 @@ for p = 1 to points.length-3 (inclusive):
-->
<img
class="LaTeX SVG"
src="./images/chapters/circles_cubic/b985384d01cb32d422f5d1123707ebc8.svg"
width="356px"
src="./images/chapters/circles_cubic/cb6686f1aff26d9f47ed4c695109fd5f.svg"
width="357px"
height="263px"
loading="lazy"
/>