1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-08-31 12:01:54 +02:00

full regeneration

This commit is contained in:
Pomax
2020-09-19 18:34:03 -07:00
parent ad872f83c5
commit 4c0e71cd4a
234 changed files with 1468 additions and 1376 deletions

View File

@@ -3,36 +3,37 @@
If you want to move objects along a curve, or "away from" a curve, the two vectors you're most interested in are the tangent vector and normal vector for curve points. These are actually really easy to find. For moving and orienting along a curve, we use the tangent, which indicates the direction of travel at specific points, and is literally just the first derivative of our curve:
\[
\left \{ \begin{matrix}
\begin{matrix}
tangent_x(t) = B'_x(t) \\
\\
tangent_y(t) = B'_y(t)
\end{matrix} \right.
\end{matrix}
\]
This gives us the directional vector we want. We can normalize it to give us uniform directional vectors (having a length of 1.0) at each point, and then do whatever it is we want to do based on those directions:
\[
d = || tangent(t) || = \sqrt{B'_x(t)^2 + B'_y(t)^2}
\]
\[
\left \{ \begin{matrix}
\hat{x}(t) = || tangent_x(t) ||
=\frac{tangent_x(t)}{ || tangent(t) || }
\begin{matrix}
d = \left \| tangent(t) \right \| = \sqrt{B'_x(t)^2 + B'_y(t)^2} \\
\\
\hat{x}(t) = \left \| tangent_x(t) \right \|
=\frac{tangent_x(t)}{ \left \| tangent(t) \right \| }
= \frac{B'_x(t)}{d} \\
\hat{y}(t) = || tangent_y(t) ||
= \frac{tangent_y(t)}{ || tangent(t) || }
\\
\hat{y}(t) = \left \| tangent_y(t) \right \|
= \frac{tangent_y(t)}{ \left \| tangent(t) \right \| }
= \frac{B'_y(t)}{d}
\end{matrix} \right.
\end{matrix}
\]
The tangent is very useful for moving along a line, but what if we want to move away from the curve instead, perpendicular to the curve at some point <i>t</i>? In that case we want the *normal* vector. This vector runs at a right angle to the direction of the curve, and is typically of length 1.0, so all we have to do is rotate the normalized directional vector and we're done:
\[
\left \{ \begin{array}{l}
\begin{array}{l}
normal_x(t) = \hat{x}(t) \cdot \cos{\frac{\pi}{2}} - \hat{y}(t) \cdot \sin{\frac{\pi}{2}} = - \hat{y}(t) \\
\\
normal_y(t) = \underset{quarter\ circle\ rotation} {\underbrace{ \hat{x}(t) \cdot \sin{\frac{\pi}{2}} + \hat{y}(t) \cdot \cos{\frac{\pi}{2}} }} = \hat{x}(t)
\end{array} \right.
\end{array}
\]
<div class="note">

View File

@@ -6,6 +6,7 @@ setup() {
curve = Bezier.defaultQuadratic(this);
} else {
curve = Bezier.defaultCubic(this);
// to show this off for Cubic curves we need to change some of the points
curve.points[0].x = 30;
curve.points[0].y = 230;
curve.points[1].x = 75;
@@ -25,24 +26,30 @@ draw() {
let t = i/10.0;
let p = curve.get(t);
let d = this.type === `quadratic` ? this.getQuadraticDerivative(t, pts) : this.getCubicDerivative(t, pts);
let m = sqrt(d.x*d.x + d.y*d.y);
d = { x: d.x/m, y: d.y/m };
let n = this.getNormal(t, d);
setStroke(`blue`);
line(p.x, p.y, p.x + d.x*f, p.y + d.y*f);
setStroke(`red`);
line(p.x, p.y, p.x + n.x*f, p.y + n.y*f);
setStroke(`black`);
circle(p.x, p.y, 3);
this.drawVectors(f, t, p, d);
}
curve.drawPoints();
}
drawVectors(f, t, p, d) {
let m = sqrt(d.x*d.x + d.y*d.y);
d = { x: d.x/m, y: d.y/m };
let n = this.getNormal(t, d);
// draw the tangent vector
setStroke(`blue`);
line(p.x, p.y, p.x + d.x*f, p.y + d.y*f);
// draw the normal vector
setStroke(`red`);
line(p.x, p.y, p.x + n.x*f, p.y + n.y*f);
// and the point these are for
setStroke(`black`);
circle(p.x, p.y, 3);
}
getQuadraticDerivative(t, points) {
let mt = (1 - t), d = [
{