mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-09-01 20:33:34 +02:00
full regeneration
This commit is contained in:
@@ -4,6 +4,7 @@ import { project, projectXY, projectXZ, projectYZ } from "./projection.js";
|
||||
let d, cube;
|
||||
|
||||
setup() {
|
||||
// step 1: let's define a cube to show our curve "in"
|
||||
d = this.width/2 + 25;
|
||||
cube = [
|
||||
{x:0, y:0, z:0},
|
||||
@@ -15,16 +16,25 @@ setup() {
|
||||
{x:d, y:d, z:d},
|
||||
{x:0, y:d, z:d}
|
||||
].map(p => project(p));
|
||||
|
||||
// step 2: let's also define our 3D curve
|
||||
const points = this.points = [
|
||||
{x:120, y: 0, z: 0},
|
||||
{x:120, y:220, z: 0},
|
||||
{x: 30, y: 0, z: 30},
|
||||
{x: 0, y: 0, z:200}
|
||||
];
|
||||
|
||||
// step 3: to draw this curve to the screen, we need to project the
|
||||
// coordinates from 3D to 2D, for which we use what is called
|
||||
// a "cabinet projection".
|
||||
this.curve = new Bezier(this, points.map(p => project(p)));
|
||||
|
||||
// We also construct handy projections on just the X/Y, X/Z, and Y/Z planes.
|
||||
this.cxy = new Bezier(this, points.map(p => projectXY(p)));
|
||||
this.cxz = new Bezier(this, points.map(p => projectXZ(p)));
|
||||
this.cyz = new Bezier(this, points.map(p => projectYZ(p)));
|
||||
|
||||
setSlider(`.slide-control`, `position`, 0);
|
||||
}
|
||||
|
||||
@@ -33,21 +43,32 @@ draw() {
|
||||
translate(this.width/2 - 60, this.height/2 + 75);
|
||||
const curve = this.curve;
|
||||
|
||||
// Draw all our planar curve projections first
|
||||
this.drawCurveProjections();
|
||||
|
||||
// And the "back" side of our cube
|
||||
this.drawCubeBack();
|
||||
|
||||
// Then, we draw the real curve
|
||||
curve.drawCurve(`grey`);
|
||||
setStroke(`grey`)
|
||||
line(curve.points[0].x, curve.points[0].y, curve.points[1].x, curve.points[1].y);
|
||||
line(curve.points[2].x, curve.points[2].y, curve.points[3].x, curve.points[3].y);
|
||||
curve.points.forEach(p => circle(p.x, p.y, 2));
|
||||
|
||||
// And the current point on that curve
|
||||
this.drawPoint(this.position);
|
||||
|
||||
// and then we can add the "front" of the cube.
|
||||
this.drawCubeFront();
|
||||
}
|
||||
|
||||
drawCurveProjections() {
|
||||
this.cxy.drawCurve(`#EEF`);
|
||||
this.cxz.drawCurve(`#EEF`);
|
||||
this.cyz.drawCurve(`#EEF`);
|
||||
}
|
||||
|
||||
drawCubeBack() {
|
||||
const c = cube;
|
||||
|
||||
@@ -64,12 +85,6 @@ drawCubeBack() {
|
||||
line(c[0].x, c[0].y, c[4].x, c[4].y);
|
||||
}
|
||||
|
||||
drawCurveProjections() {
|
||||
this.cxy.drawCurve(`#EEF`);
|
||||
this.cxz.drawCurve(`#EEF`);
|
||||
this.cyz.drawCurve(`#EEF`);
|
||||
}
|
||||
|
||||
drawPoint(t) {
|
||||
const {o, r, n, dt} = this.getFrenetVectors(t, this.points);
|
||||
|
||||
@@ -78,8 +93,13 @@ drawPoint(t) {
|
||||
const p = project(o);
|
||||
circle(p.x, p.y, 3);
|
||||
|
||||
// Draw our axis of rotation,
|
||||
this.drawVector(p, vec.normalize(r), 40, `blue`, `r`);
|
||||
|
||||
// our normal,
|
||||
this.drawVector(p, vec.normalize(n), 40, `red`, `n`);
|
||||
|
||||
// and our derivative.
|
||||
this.drawVector(p, vec.normalize(dt), 40, `green`, `t′`);
|
||||
|
||||
setFill(`black`)
|
||||
@@ -88,8 +108,6 @@ drawPoint(t) {
|
||||
|
||||
drawCubeFront() {
|
||||
const c = cube;
|
||||
|
||||
// rest of the cube
|
||||
setStroke("lightgrey");
|
||||
line(c[1].x, c[1].y, c[2].x, c[2].y);
|
||||
line(c[2].x, c[2].y, c[3].x, c[3].y);
|
||||
@@ -103,13 +121,20 @@ drawCubeFront() {
|
||||
}
|
||||
|
||||
getFrenetVectors(t, originalPoints) {
|
||||
// The frenet vectors are based on the (unprojected) curve,
|
||||
// and its derivative curve.
|
||||
const curve = new Bezier(this, originalPoints);
|
||||
const d1curve = new Bezier(this, curve.dpoints[0]);
|
||||
const o = curve.get(t);
|
||||
const dt = d1curve.get(t);
|
||||
const ddt = d1curve.derivative(t);
|
||||
const o = curve.get(t);
|
||||
const b = vec.plus(dt, ddt);
|
||||
const r = vec.cross(b, dt);
|
||||
// project the derivative into the future
|
||||
const f = vec.plus(dt, ddt);
|
||||
// and then find the axis of rotation wrt the plane
|
||||
// spanned by the currented and projected derivative
|
||||
const r = vec.cross(f, dt);
|
||||
// after which the normal is found by rotating the
|
||||
// tangent in that plane.
|
||||
const n = vec.normalize(vec.cross(r, dt));
|
||||
return { o, dt, r, n };
|
||||
}
|
||||
|
Reference in New Issue
Block a user