mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-17 06:04:31 +02:00
Ru ru translation (#298)
* ru-RU introduction Translation of introduction to Russian * ru-RU whatis Translation of chapter 2 to Russian * (fixup) ru-RU intro fixed missing translations * ru-RU index.html Translated header, meta, title and link names for existing chapter's traslations. (will be updated with every new commit) * ru-RU locale strings Locale string russian traslations * locale fixup * build chapters 1,2 * ru-RU explanation translation of explanation to Russian. * ru-RU control translation of #control to Russian * ru-RU weightcontrol translation of #weightcontrol to Russian * ru-RU derivatives translation of #derivatives to Russian * (fixup) ru-RU weightcontrol * (fixup) ru-RU explanation * ru-RU extended * (fixup) ru-RU derivatives add newline to the end of paragraph * ru-RU decasteljau * ru-RU matrix Co-authored-by: Mammoth <echo@mammothnotes.com>
This commit is contained in:
120
docs/chapters/matrix/content.ru-RU.md
Normal file
120
docs/chapters/matrix/content.ru-RU.md
Normal file
@@ -0,0 +1,120 @@
|
||||
# Кривые Безье как матричные уравнения
|
||||
|
||||
Мы также можем представить кривые Безье как матричную операцию, выразив формулу Безье как функцию с полиноминальноминальной основой, матрицу коэффициентов и матрицу конкретных координат. Давайте рассмотрим что это значит для уравнений кубических кривых Безье, используя P<sub>...</sub> для обозначения координат в "одном или более пространстве".
|
||||
|
||||
\[
|
||||
B(t) = P_1 \cdot (1-t)^3 + P_2 \cdot 3 \cdot (1-t)^2 \cdot t + P_3 \cdot 3 \cdot (1-t) \cdot t^2 + P_4 \cdot t^3
|
||||
\]
|
||||
|
||||
Обобщив, игнорируя конкретные значения, мы получим:
|
||||
|
||||
\[
|
||||
B(t) = (1-t)^3 + 3 \cdot (1-t)^2 \cdot t + 3 \cdot (1-t) \cdot t^2 + t^3
|
||||
\]
|
||||
|
||||
Это, в свою очередь, может быть записано как:
|
||||
|
||||
\[
|
||||
\begin{matrix}
|
||||
... & = & (1-t)^3 \\
|
||||
& + & 3 \cdot (1-t)^2 \cdot t \\
|
||||
& + & 3 \cdot (1-t) \cdot t^2 \\
|
||||
& + & t^3 \\
|
||||
\end{matrix}
|
||||
\]
|
||||
|
||||
Последнее мы можем раскрыть, записав как:
|
||||
|
||||
\[
|
||||
\begin{matrix}
|
||||
... & = & (1-t) \cdot (1-t) \cdot (1-t) & = & -t^3 + 3 \cdot t^2 - 3 \cdot t + 1 \\
|
||||
& + & 3 \cdot (1-t) \cdot (1-t) \cdot t & = & 3 \cdot t^3 - 6 \cdot t^2 + 3 \cdot t \\
|
||||
& + & 3 \cdot (1-t) \cdot t \cdot t & = & -3 \cdot t^3 + 3 \cdot t^2 \\
|
||||
& + & t \cdot t \cdot t & = & t^3 \\
|
||||
\end{matrix}
|
||||
\]
|
||||
|
||||
Более того можно записать с коэффициентами 1 и 0, включив нивелированные термины:
|
||||
|
||||
\[
|
||||
\begin{matrix}
|
||||
... & = & -1 \cdot t^3 + 3 \cdot t^2 - 3 \cdot t + 1 \\
|
||||
& + & +3 \cdot t^3 - 6 \cdot t^2 + 3 \cdot t + 0 \\
|
||||
& + & -3 \cdot t^3 + 3 \cdot t^2 + 0 \cdot t + 0 \\
|
||||
& + & +1 \cdot t^3 + 0 \cdot t^2 + 0 \cdot t + 0 \\
|
||||
\end{matrix}
|
||||
\]
|
||||
|
||||
И уже это можно рассматривать как серию четырех матричных операций:
|
||||
|
||||
\[
|
||||
\begin{bmatrix}t^3 & t^2 & t & 1\end{bmatrix} \cdot \begin{bmatrix}-1 \\ 3 \\ -3 \\ 1\end{bmatrix}
|
||||
+ \begin{bmatrix}t^3 & t^2 & t & 1\end{bmatrix} \cdot \begin{bmatrix}3 \\ -6 \\ 3 \\ 0\end{bmatrix}
|
||||
+ \begin{bmatrix}t^3 & t^2 & t & 1\end{bmatrix} \cdot \begin{bmatrix}-3 \\ 3 \\ 0 \\ 0\end{bmatrix}
|
||||
+ \begin{bmatrix}t^3 & t^2 & t & 1\end{bmatrix} \cdot \begin{bmatrix}1 \\ 0 \\ 0 \\ 0\end{bmatrix}
|
||||
\]
|
||||
|
||||
Скомбинировав в единую матричную операцию, получим:
|
||||
|
||||
\[
|
||||
\begin{bmatrix}t^3 & t^2 & t & 1\end{bmatrix} \cdot \begin{bmatrix}
|
||||
-1 & 3 & -3 & 1 \\
|
||||
3 & -6 & 3 & 0 \\
|
||||
-3 & 3 & 0 & 0 \\
|
||||
1 & 0 & 0 & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
Такой тип функций полиноминальной основы зачастую записывается с основой в возрастающем порядке, что значит мы должны обернуть нашу `t` матрицу горизонтально, а нашу "большую" матрицу — вертикально:
|
||||
|
||||
\[
|
||||
\begin{bmatrix}1 & t & t^2 & t^3\end{bmatrix} \cdot \begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
-3 & 3 & 0 & 0 \\
|
||||
3 & -6 & 3 & 0 \\
|
||||
-1 & 3 & -3 & 1
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
Наконец, мы можем добавить оригинальные координаты единой третьей матрицей:
|
||||
|
||||
\[
|
||||
B(t) = \begin{bmatrix}
|
||||
1 & t & t^2 & t^3
|
||||
\end{bmatrix}
|
||||
\cdot
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
-3 & 3 & 0 & 0 \\
|
||||
3 & -6 & 3 & 0 \\
|
||||
-1 & 3 & -3 & 1
|
||||
\end{bmatrix}
|
||||
\cdot
|
||||
\begin{bmatrix}
|
||||
P_1 \\ P_2 \\ P_3 \\ P_4
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
Такой же фокус может быть проделан с квадратной кривой, в коем случае мы получаем:
|
||||
|
||||
\[
|
||||
B(t) = \begin{bmatrix}
|
||||
1 & t & t^2
|
||||
\end{bmatrix}
|
||||
\cdot
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
-2 & 2 & 0 \\
|
||||
1 & -2 & 1
|
||||
\end{bmatrix}
|
||||
\cdot
|
||||
\begin{bmatrix}
|
||||
P_1 \\ P_2 \\ P_3
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
Подставив `t` и перемножив матрицы, мы получим такие-же значения, как при подсчете с использованием исходной полиноминальной функции или графического метода интерполяции.
|
||||
|
||||
**Итак: зачем нам возится с матрицами?** Матричное произведение раскрывает свойства функции кривых, которые в противном случае, было бы сложно обнаружить. Например, мы видим, что наша функция принадлежит к типу [треугольных матриц](https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0) (* в оригинале [другая ссылка](https://en.wikipedia.org/wiki/Triangular_matrix)), определенные количеством контрольных координат и обладают всеми соответствующими свойствами. Также, что они могут быть обернуты, что в свою очередь определяет [тонну других свойств](https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0#%D0%A1%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B0_%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B9_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8B) (* в оригинале [другая ссылка](https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem)), применимых к нашим кривым. Конечно же, основным вопросом остается: "В чем состоит польза?". Тогда как ответ не становится *очевидным* немедленно, чуть далее мы увидим определенные случаи, где некоторые свойства кривых могут быть исчислены посредством манипуляции функцией, либо остроумным использованием матриц, и иногда последнее намного быстрее.
|
||||
|
||||
Потому пока давайте запомним, что функции могут быть описаны таким образом, и будем двигаться дальше.
|
Reference in New Issue
Block a user