1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-09-01 04:22:28 +02:00
This commit is contained in:
Pomax
2020-08-06 22:36:17 -07:00
parent 6b4ca32ac2
commit 87f0207f12
5 changed files with 31 additions and 23 deletions

View File

@@ -494,7 +494,7 @@
compute that really easily:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/b5aa26284ba3df74970a95cb047a841d.svg"
width="501px"
height="103px"
@@ -640,7 +640,7 @@
function stays true:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/34fe255294faf45ab02128f7997b92ce.svg"
width="197px"
height="16px"
@@ -653,7 +653,7 @@
depending on whether we're working with quadratic or cubic curves:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/62f2f984e43a22a6b4bda4d399dedfc6.svg"
width="197px"
height="87px"
@@ -710,7 +710,7 @@
following always holds:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/385d1fd4aecbd2066e6e284a84408be6.svg"
width="251px"
height="39px"
@@ -723,7 +723,7 @@
have the distance between them, we know where A has to be:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/12aaf0d7fd20b3c551a0ec76b18bd7d2.svg"
width="217px"
height="37px"
@@ -746,14 +746,14 @@
the same name both here and on MathOverflow.
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/059000c5c8a37dcc8d7fa04154a05df3.svg"
width="245px"
height="41px"
loading="lazy"
/>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/b4987e9b77b0df604238b88596c5f7c3.svg"
width="223px"
height="41px"

View File

@@ -401,7 +401,7 @@
例えば、2点間の距離がわかっているとして、一方の点から距離の20%だけ離れたすなわち、もう一方の点から80%離れた)新しい点を求めたい場合、次のようにとても簡単に計算できます。
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/4df088f01d0fd4de84a50bbc2e25f8a7.svg"
width="433px"
height="108px"
@@ -529,7 +529,7 @@
function stays true:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/34fe255294faf45ab02128f7997b92ce.svg"
width="197px"
height="16px"
@@ -542,7 +542,7 @@
depending on whether we're working with quadratic or cubic curves:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/62f2f984e43a22a6b4bda4d399dedfc6.svg"
width="197px"
height="87px"
@@ -599,7 +599,7 @@
following always holds:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/385d1fd4aecbd2066e6e284a84408be6.svg"
width="251px"
height="39px"
@@ -612,7 +612,7 @@
have the distance between them, we know where A has to be:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/12aaf0d7fd20b3c551a0ec76b18bd7d2.svg"
width="217px"
height="37px"
@@ -635,14 +635,14 @@
the same name both here and on MathOverflow.
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/059000c5c8a37dcc8d7fa04154a05df3.svg"
width="245px"
height="41px"
loading="lazy"
/>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/b4987e9b77b0df604238b88596c5f7c3.svg"
width="223px"
height="41px"

View File

@@ -68,4 +68,12 @@ div.note:before {
position: absolute;
top: -0.5em;
left: -1em;
}
}
img.LaTeX.SVG {
display: block;
}
img.LaTeX.SVG + img.LaTeX.SVG {
margin-top: 1em;
}

View File

@@ -129,7 +129,7 @@ export default async function latexToSVG(latex, chapter, locale, block) {
var w = Math.round(((parseFloat(vb[2]) - parseFloat(vb[0])) * 4) / 3);
var h = Math.round(((parseFloat(vb[3]) - parseFloat(vb[1])) * 4) / 3);
return `<img className="LaTeX SVG" src="images/latex/${path.basename(
return `<img class="LaTeX SVG" src="images/latex/${path.basename(
SVGfilename
)}" width="${Math.round(w)}px" height="${Math.round(h)}px" loading="lazy">`;
}

View File

@@ -388,7 +388,7 @@
如果我们知道两点之间的距离并想找出离第一个点20%间距的一个新的点(也就是离第二个点80%的间距),我们可以通过简单的计算来得到:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/b5aa26284ba3df74970a95cb047a841d.svg"
width="501px"
height="103px"
@@ -516,7 +516,7 @@
function stays true:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/34fe255294faf45ab02128f7997b92ce.svg"
width="197px"
height="16px"
@@ -529,7 +529,7 @@
depending on whether we're working with quadratic or cubic curves:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/62f2f984e43a22a6b4bda4d399dedfc6.svg"
width="197px"
height="87px"
@@ -586,7 +586,7 @@
following always holds:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/385d1fd4aecbd2066e6e284a84408be6.svg"
width="251px"
height="39px"
@@ -599,7 +599,7 @@
have the distance between them, we know where A has to be:
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/12aaf0d7fd20b3c551a0ec76b18bd7d2.svg"
width="217px"
height="37px"
@@ -622,14 +622,14 @@
the same name both here and on MathOverflow.
</p>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/059000c5c8a37dcc8d7fa04154a05df3.svg"
width="245px"
height="41px"
loading="lazy"
/>
<img
className="LaTeX SVG"
class="LaTeX SVG"
src="images/latex/b4987e9b77b0df604238b88596c5f7c3.svg"
width="223px"
height="41px"