mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-31 20:11:59 +02:00
catmull
This commit is contained in:
@@ -234,7 +234,7 @@ var Moulding = React.createClass({
|
||||
we can compute the ABC ratio for this configuration, and we know that our new point A' should like at a distance:</p>
|
||||
|
||||
<p>\[
|
||||
A' = B' + \frac{B' - C}{ratio} = B' - \frac{C - B'}{ratio}
|
||||
A' = B' - \frac{C - B'}{ratio} = B' + \frac{B - C}{ratio}
|
||||
\]</p>
|
||||
|
||||
<p>For quadratic curves, this means we're done, since the new point A' is equivalent to the new quadratic control point.
|
||||
@@ -249,7 +249,9 @@ var Moulding = React.createClass({
|
||||
curve. Given A', B', and the endpoints e1 and e2 of the strut line relative to B', we can now compute where the new control points
|
||||
should be. Remember that B' lies on line e1--e2 at a distance <i>t</i>, because that's how Bézier curves work. In the same manner,
|
||||
we know the distance A--e1 is only line-interval [0,t] of the full segment, and A--e2 is only line-interval [t,1], so constructing
|
||||
the new control points is fairly easy:</p>
|
||||
the new control points is fairly easy.</p>
|
||||
|
||||
<p>First, we construct the one-level-of-de-Casteljau-up points:</p>
|
||||
|
||||
<p>\[
|
||||
\left \{ \begin{align}
|
||||
@@ -258,6 +260,8 @@ var Moulding = React.createClass({
|
||||
\end{align} \right .
|
||||
\]</p>
|
||||
|
||||
<p>And then we can compute the new control points:</p>
|
||||
|
||||
<p>\[
|
||||
\left \{ \begin{align}
|
||||
C1' &= v1 + \frac{v1 - start}{t} \\
|
||||
|
Reference in New Issue
Block a user