mirror of
https://github.com/Pomax/BezierInfo-2.git
synced 2025-08-26 17:54:52 +02:00
[ja-JP] Replace English with Japanese in the LaTeX blocks (#75)
This commit is contained in:
committed by
Mike Kamermans
parent
8179fcf3f6
commit
c775ce7309
@@ -55,9 +55,9 @@
|
||||
|
||||
\[
|
||||
\begin{aligned}
|
||||
linear &= (1-t) + t \\
|
||||
square &= (1-t)^2 + 2 \cdot (1-t) \cdot t + t^2 \\
|
||||
cubic &= (1-t)^3 + 3 \cdot (1-t)^2 \cdot t + 3 \cdot (1-t) \cdot t^2 + t^3
|
||||
1次 &= (1-t) + t \\
|
||||
2次 &= (1-t)^2 + 2 \cdot (1-t) \cdot t + t^2 \\
|
||||
3次 &= (1-t)^3 + 3 \cdot (1-t)^2 \cdot t + 3 \cdot (1-t) \cdot t^2 + t^3
|
||||
\end{aligned}
|
||||
\]
|
||||
|
||||
@@ -65,10 +65,10 @@
|
||||
|
||||
\[
|
||||
\begin{aligned}
|
||||
linear &= \hspace{2.5em} 1 + 1 \\
|
||||
square &= \hspace{1.7em} 1 + 2 + 1\\
|
||||
cubic &= \hspace{0.85em} 1 + 3 + 3 + 1\\
|
||||
hypercubic &= 1 + 4 + 6 + 4 + 1
|
||||
1次 &= \hspace{2.5em} 1 + 1 \\
|
||||
2次 &= \hspace{1.7em} 1 + 2 + 1\\
|
||||
3次 &= \hspace{0.85em} 1 + 3 + 3 + 1\\
|
||||
4次 &= 1 + 4 + 6 + 4 + 1
|
||||
\end{aligned}
|
||||
\]
|
||||
|
||||
@@ -78,9 +78,9 @@
|
||||
|
||||
\[
|
||||
\begin{aligned}
|
||||
linear &= BLUE[a] + RED[b] \\
|
||||
square &= BLUE[a] \cdot BLUE[a] + BLUE[a] \cdot RED[b] + RED[b] \cdot RED[b] \\
|
||||
cubic &= BLUE[a] \cdot BLUE[a] \cdot BLUE[a] + BLUE[a] \cdot BLUE[a] \cdot RED[b] + BLUE[a] \cdot RED[b] \cdot RED[b] + RED[b] \cdot RED[b] \cdot RED[b]\\
|
||||
1次 &= BLUE[a] + RED[b] \\
|
||||
2次 &= BLUE[a] \cdot BLUE[a] + BLUE[a] \cdot RED[b] + RED[b] \cdot RED[b] \\
|
||||
3次 &= BLUE[a] \cdot BLUE[a] \cdot BLUE[a] + BLUE[a] \cdot BLUE[a] \cdot RED[b] + BLUE[a] \cdot RED[b] \cdot RED[b] + RED[b] \cdot RED[b] \cdot RED[b]\\
|
||||
\end{aligned}
|
||||
\]
|
||||
|
||||
@@ -88,9 +88,9 @@
|
||||
|
||||
\[
|
||||
Bézier(n,t) = \sum_{i=0}^{n}
|
||||
\underset{binomial\ term}{\underbrace{\binom{n}{i}}}
|
||||
\underset{二項係数部分の項}{\underbrace{\binom{n}{i}}}
|
||||
\cdot\
|
||||
\underset{polynomial\ term}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
|
||||
\underset{多項式部分の項}{\underbrace{(1-t)^{n-i} \cdot t^{i}}}
|
||||
\]
|
||||
|
||||
そして、これがベジエ曲線の完全な表現です。この関数中のΣは、加算の繰り返し(Σの下にある変数を使って、...=<値>から始めてΣの下にある値まで)を表します。
|
||||
|
Reference in New Issue
Block a user