1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-09-01 04:22:28 +02:00

Automated build

This commit is contained in:
Bezierinfo CI
2021-10-21 18:49:17 +00:00
parent 5141d4355e
commit ea6f610ead
9 changed files with 14 additions and 14 deletions

4
docs/index.html generated
View File

@@ -38,7 +38,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-09-04T16:56:44+00:00" />
<meta property="og:updated_time" content="2021-10-21T18:48:35+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -3693,7 +3693,7 @@ generateRMFrames(steps) -> frames:
<p>
The derivative of a quadratic Bézier curve is a linear Bézier curve, interpolating between just two terms, which means finding the
solution for "where is this line 0" is effectively trivial by rewriting it to a function of <code>t</code> and solving. First we turn our
cubic Bézier function into a quadratic one, by following the rule mentioned at the end of the
quadratic Bézier function into a linear one, by following the rule mentioned at the end of the
<a href="#derivatives">derivatives section</a>:
</p>
<!--

4
docs/ja-JP/index.html generated
View File

@@ -41,7 +41,7 @@
<meta property="og:locale" content="ja-JP" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-09-04T16:56:44+00:00" />
<meta property="og:updated_time" content="2021-10-21T18:48:35+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -3673,7 +3673,7 @@ generateRMFrames(steps) -> frames:
<p>
The derivative of a quadratic Bézier curve is a linear Bézier curve, interpolating between just two terms, which means finding the
solution for "where is this line 0" is effectively trivial by rewriting it to a function of <code>t</code> and solving. First we turn our
cubic Bézier function into a quadratic one, by following the rule mentioned at the end of the
quadratic Bézier function into a linear one, by following the rule mentioned at the end of the
<a href="#derivatives">derivatives section</a>:
</p>
<!--

View File

@@ -34,7 +34,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="Fri Sep 18 2020 00:00:00 +00:00" />
<meta property="og:updated_time" content="Sat Sep 04 2021 16:56:44 +00:00" />
<meta property="og:updated_time" content="Thu Oct 21 2021 18:48:35 +00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />

View File

@@ -34,7 +34,7 @@
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="Sun Nov 22 2020 00:00:00 +00:00" />
<meta property="og:updated_time" content="Sat Sep 04 2021 16:56:44 +00:00" />
<meta property="og:updated_time" content="Thu Oct 21 2021 18:48:35 +00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />

2
docs/news/index.html generated
View File

@@ -33,7 +33,7 @@
<meta property="og:description" content="" />
<meta property="og:locale" content="en-GB" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="Sat Sep 04 2021 16:56:44 GMT+0000 (Coordinated Universal Time)" />
<meta property="og:published_time" content="Thu Oct 21 2021 18:48:35 GMT+0000 (Coordinated Universal Time)" />
<meta property="og:updated_time" content="" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />

View File

@@ -6,7 +6,7 @@
<atom:link href="https://pomax.github.io/bezierinfo" rel="self"></atom:link>
<description>News updates for the <a href="https://pomax.github.io/bezierinfo">primer on Bézier Curves</a> by Pomax</description>
<language>en-GB</language>
<lastBuildDate>Sat Sep 04 2021 16:56:44 +00:00</lastBuildDate>
<lastBuildDate>Thu Oct 21 2021 18:48:35 +00:00</lastBuildDate>
<image>
<url>https://pomax.github.io/bezierinfo/images/og-image.png</url>
<title>A Primer on Bézier Curves</title>

4
docs/ru-RU/index.html generated
View File

@@ -34,7 +34,7 @@
<meta property="og:locale" content="ru-RU" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-09-04T16:56:44+00:00" />
<meta property="og:updated_time" content="2021-10-21T18:48:35+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -3860,7 +3860,7 @@ generateRMFrames(steps) -> frames:
<p>
The derivative of a quadratic Bézier curve is a linear Bézier curve, interpolating between just two terms, which means finding the
solution for "where is this line 0" is effectively trivial by rewriting it to a function of <code>t</code> and solving. First we turn our
cubic Bézier function into a quadratic one, by following the rule mentioned at the end of the
quadratic Bézier function into a linear one, by following the rule mentioned at the end of the
<a href="#derivatives">derivatives section</a>:
</p>
<!--

4
docs/uk-UA/index.html generated
View File

@@ -39,7 +39,7 @@
<meta property="og:locale" content="uk-UA" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-09-04T16:56:44+00:00" />
<meta property="og:updated_time" content="2021-10-21T18:48:35+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -3834,7 +3834,7 @@ generateRMFrames(steps) -> frames:
<p>
The derivative of a quadratic Bézier curve is a linear Bézier curve, interpolating between just two terms, which means finding the
solution for "where is this line 0" is effectively trivial by rewriting it to a function of <code>t</code> and solving. First we turn our
cubic Bézier function into a quadratic one, by following the rule mentioned at the end of the
quadratic Bézier function into a linear one, by following the rule mentioned at the end of the
<a href="#derivatives">derivatives section</a>:
</p>
<!--

4
docs/zh-CN/index.html generated
View File

@@ -41,7 +41,7 @@
<meta property="og:locale" content="zh-CN" />
<meta property="og:type" content="article" />
<meta property="og:published_time" content="2013-06-13T12:00:00+00:00" />
<meta property="og:updated_time" content="2021-09-04T16:56:44+00:00" />
<meta property="og:updated_time" content="2021-10-21T18:48:35+00:00" />
<meta property="og:author" content="Mike 'Pomax' Kamermans" />
<meta property="og:section" content="Bézier Curves" />
<meta property="og:tag" content="Bézier Curves" />
@@ -3649,7 +3649,7 @@ generateRMFrames(steps) -> frames:
<p>
The derivative of a quadratic Bézier curve is a linear Bézier curve, interpolating between just two terms, which means finding the
solution for "where is this line 0" is effectively trivial by rewriting it to a function of <code>t</code> and solving. First we turn our
cubic Bézier function into a quadratic one, by following the rule mentioned at the end of the
quadratic Bézier function into a linear one, by following the rule mentioned at the end of the
<a href="#derivatives">derivatives section</a>:
</p>
<!--