1
0
mirror of https://github.com/Pomax/BezierInfo-2.git synced 2025-09-08 23:50:43 +02:00
Files
BezierInfo-2/docs/chapters/decasteljau/content.ru-RU.md

55 lines
4.5 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Алгоритм де Кастельжо
Для зарисовки кривой Безье, мы можем пробежаться по всем значениям `t` от 0 до 1 и скомпилировать вывод базовой функции с подставленными весами для каждого значения. К сожалению, чем замысловатее кривая, тем дороже обходиться это обчисление. Вместо этого, мы можем воспользоваться *Алгоритмом де Кастельжо* для прорисовки кривых. Этот алгоритм позволяет прорисовывать кривые базируясь на геометрических вычислениях и довольно прост в применении. На деле, настолько прост, что его можно воплотить при помощи карандаша и линейки.
Вместо использования функции математического анализа для нахождения значений `x/y` для `t`, давайте сделаем следующее:
- Примем `t` за пропорцию(чем оно и является). t=0 будет 0% вдоль линии, t=1, соответсвенно, 100% вдоль линии.
- Возьмем все линии между заданными контрольными точками. Для кривой `n`-го порядка это `n` линий
- Разместим маркеры вдоль линий, соответсвенно значению `t`. Так, если `t` 0.2, разместим маркер на 20% от начала, и, соответственно, 80% от конца.
- Теперь соединим полученные точки линиями. Это дает нам `n-1` линий.
- Далее разместим маркеры на новых линиях, соответсвенно тому-же значению `t`.
- Продолжим повторять два предыдущих шага, пока на выводе у нас останется всего одна линия. Маркер `t` на этой линии будет соответствовать точке для `t` на нашей кривой.
Чтобы проверить это в действии, ведите ползунок под ниже представленным графиком слева направо и наоборот, задавая разные значения `t` для иллюстрации геометрического построения.
<graphics-element title="Прохождение кривой с использованием алгоритма де Кастельжо" src="./decasteljau.js">
<input type="range" min="0" max="1" step="0.01" value="0" class="slide-control">
</graphics-element>
<div class="howtocode">
### Имплементация Алгоритма де Кастельжо
Запишем согласно предложенному алгоритму:
```
function drawCurvePoint(points[], t):
if(points.length==1):
draw(points[0])
else:
newpoints=array(points.size-1)
for(i=0; i<newpoints.length; i++):
newpoints[i] = (1-t) * points[i] + t * points[i+1]
drawCurvePoint(newpoints, t)
```
Готово, алгоритм воплощен. Помимо того факта, что зачастую мы не располагаем роскошью перенагрузки оператора "+", так давайте совместим вычисление для значений `x` и `y`:
```
function drawCurvePoint(points[], t):
if(points.length==1):
draw(points[0])
else:
newpoints=array(points.size-1)
for(i=0; i<newpoints.length; i++):
x = (1-t) * points[i].x + t * points[i+1].x
y = (1-t) * points[i].y + t * points[i+1].y
newpoints[i] = new point(x,y)
drawCurvePoint(newpoints, t)
```
И что это делает? Это зарисует точку на график, если длинна вводной points составляет всего одну точку. В противном случае — это создает новый список для вводной, составленный из "маркеров", обчисленых пропорционально значению <i>t</i> между поточного списка точек вводной и вызовет саму себя с новой вводной.
</div>