mirror of
https://github.com/kamranahmedse/developer-roadmap.git
synced 2025-08-01 06:50:26 +02:00
Update coursera links
This commit is contained in:
@@ -316,7 +316,7 @@
|
||||
"x": "279",
|
||||
"y": "583",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/specializations/mathematics-machine-learning#courses"
|
||||
"controlName": "ext_link:imp.i384100.net/baqMYv"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -443,7 +443,7 @@
|
||||
"x": "278",
|
||||
"y": "688",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/learn/algebra-and-differential-calculus-for-data-science#syllabus"
|
||||
"controlName": "ext_link:imp.i384100.net/LX5M7M"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -596,7 +596,7 @@
|
||||
"x": "903",
|
||||
"y": "582",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/learn/stanford-statistics#syllabus"
|
||||
"controlName": "ext_link:imp.i384100.net/3eRv4v"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -736,7 +736,7 @@
|
||||
"x": "904",
|
||||
"y": "686",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/learn/statistical-analysis-hypothesis-testing-sas#syllabus"
|
||||
"controlName": "ext_link:imp.i384100.net/vN0JAA"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -862,7 +862,7 @@
|
||||
"x": "904",
|
||||
"y": "792",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/learn/probability-statistics#syllabus"
|
||||
"controlName": "ext_link:imp.i384100.net/daDM6Q"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -2157,7 +2157,7 @@
|
||||
"x": "269",
|
||||
"y": "1102",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/learn/erasmus-econometrics#syllabus"
|
||||
"controlName": "ext_link:imp.i384100.net/k0krYL"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -2529,7 +2529,7 @@
|
||||
"x": "269",
|
||||
"y": "1464",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/learn/linear-regression-business-statistics#about"
|
||||
"controlName": "ext_link:imp.i384100.net/9g97Ke"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -3018,7 +3018,7 @@
|
||||
"x": "255",
|
||||
"y": "2037",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/specializations/algorithms#courses"
|
||||
"controlName": "ext_link:imp.i384100.net/5gqv4n"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -3375,7 +3375,7 @@
|
||||
"x": "810",
|
||||
"y": "1749",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/projects/exploratory-data-analysis-python-pandas"
|
||||
"controlName": "ext_link:imp.i384100.net/AWAv4R"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -3437,7 +3437,7 @@
|
||||
"x": "811",
|
||||
"y": "1804",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/learn/ibm-exploratory-data-analysis-for-machine-learning#syllabus"
|
||||
"controlName": "ext_link:imp.i384100.net/GmQMLE"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -3499,7 +3499,7 @@
|
||||
"x": "811",
|
||||
"y": "1860",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/projects/exploratory-data-analysis-seaborn"
|
||||
"controlName": "ext_link:imp.i384100.net/ZQmMgR"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -3786,7 +3786,7 @@
|
||||
"x": "834",
|
||||
"y": "2185",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/specializations/machine-learning-introduction#courses"
|
||||
"controlName": "ext_link:imp.i384100.net/oqGkrg"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -4045,7 +4045,7 @@
|
||||
"x": "268",
|
||||
"y": "2445",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/specializations/deep-learning#courses"
|
||||
"controlName": "ext_link:imp.i384100.net/Wq9MV3"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
@@ -4560,7 +4560,7 @@
|
||||
"x": "938",
|
||||
"y": "2606",
|
||||
"properties": {
|
||||
"controlName": "ext_link:coursera.org/specializations/machine-learning-engineering-for-production-mlops#courses"
|
||||
"controlName": "ext_link:imp.i384100.net/nLA5mx"
|
||||
},
|
||||
"children": {
|
||||
"controls": {
|
||||
|
@@ -1,7 +1,7 @@
|
||||
# Classic/Advanced ML
|
||||
|
||||
- [Open Machine Learning Course](https://mlcourse.ai/book/topic01/topic01_intro.html)
|
||||
- [Coursera: Machine Learning Spcialization](https://www.coursera.org/specializations/machine-learning-introduction#courses)
|
||||
- [Coursera: Machine Learning Specialization](https://imp.i384100.net/oqGkrg)
|
||||
- [Pattern Recognition and Machine Learning by Christopher Bishop](https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf)
|
||||
- [Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop](https://github.com/gerdm/prml)
|
||||
|
||||
|
@@ -1,6 +1,6 @@
|
||||
# Data Understanding, Analysis and Visualization
|
||||
|
||||
- [Exploratory Data Analysis With Python and Pandas](https://www.coursera.org/projects/exploratory-data-analysis-python-pandas)
|
||||
- [Exploratory Data Analysis for Machine Learning](https://www.coursera.org/learn/ibm-exploratory-data-analysis-for-machine-learning#syllabus)
|
||||
- [Exploratory Data Analysis with Seaborn](https://www.coursera.org/projects/exploratory-data-analysis-seaborn)
|
||||
- [Exploratory Data Analysis With Python and Pandas](https://imp.i384100.net/AWAv4R)
|
||||
- [Exploratory Data Analysis for Machine Learning](https://imp.i384100.net/GmQMLE)
|
||||
- [Exploratory Data Analysis with Seaborn](https://imp.i384100.net/ZQmMgR)
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
# MLOps
|
||||
|
||||
- [Machine Learning Engineering for Production (MLOps) Specialization](https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops#courses)
|
||||
- [Machine Learning Engineering for Production (MLOps) Specialization](https://imp.i384100.net/nLA5mx)
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
# Differential Calculus
|
||||
|
||||
- [Algebra and Differential Calculus for Data Science](https://coursera.org/learn/algebra-and-differential-calculus-for-data-science#syllabus)
|
||||
- [Algebra and Differential Calculus for Data Science](https://imp.i384100.net/LX5M7M)
|
||||
|
||||
|
@@ -3,5 +3,5 @@
|
||||
- [The Illustrated Transformer](https://jalammar.github.io/illustrated-transformer/)
|
||||
- [Attention is All you Need](https://arxiv.org/pdf/1706.03762.pdf)
|
||||
- [Deep Learning Book](https://www.deeplearningbook.org/)
|
||||
- [Deep Learning Specialization](https://www.coursera.org/specializations/deep-learning#courses)
|
||||
- [Deep Learning Specialization](https://imp.i384100.net/Wq9MV3)
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
# Hypothesis Testing
|
||||
|
||||
- [Introduction to Statistical Analysis: Hypothesis Testing](https://www.coursera.org/learn/statistical-analysis-hypothesis-testing-sas#syllabus)
|
||||
- [Introduction to Statistical Analysis: Hypothesis Testing](https://imp.i384100.net/vN0JAA)
|
||||
|
||||
|
@@ -2,4 +2,4 @@
|
||||
|
||||
- [Learn Algorithms](https://leetcode.com/explore/learn/)
|
||||
- [Leetcode - Study Plans](https://leetcode.com/studyplan/)
|
||||
- [Algorithms Specialization](https://coursera.org/specializations/algorithms#courses)
|
||||
- [Algorithms Specialization](https://imp.i384100.net/5gqv4n)
|
@@ -1,4 +1,4 @@
|
||||
# Learn Algebra, Calculus, Mathematical Analysis
|
||||
|
||||
- [Mathematics for Machine Learning Specialization](https://www.coursera.org/specializations/mathematics-machine-learning#courses)
|
||||
- [Mathematics for Machine Learning Specialization](https://imp.i384100.net/baqMYv)
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
# Probability and Sampling
|
||||
|
||||
- [Probability and Statistics: To p or not to p?](https://www.coursera.org/learn/probability-statistics#syllabus)
|
||||
- [Probability and Statistics: To p or not to p?](https://imp.i384100.net/daDM6Q)
|
||||
|
||||
|
@@ -2,11 +2,11 @@
|
||||
|
||||
- [10 Fundamental Theorems for Econometrics](https://bookdown.org/ts_robinson1994/10EconometricTheorems/)
|
||||
- [Dougherty Intro to Econometrics 4th edition](https://www.academia.edu/33062577/Dougherty_Intro_to_Econometrics_4th_ed_small)
|
||||
- [Econometrics: Methods and Applications](https://www.coursera.org/learn/erasmus-econometrics#syllabus)
|
||||
- [Econometrics: Methods and Applications](https://imp.i384100.net/k0krYL)
|
||||
- [Kaggle - Learn Time Series](https://www.kaggle.com/learn/time-series)
|
||||
- [Time series Basics : Exploring traditional TS](https://www.kaggle.com/code/jagangupta/time-series-basics-exploring-traditional-ts#Hierarchical-time-series)
|
||||
- [How to Create an ARIMA Model for Time Series Forecasting in Python](https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python)
|
||||
- [11 Classical Time Series Forecasting Methods in Python](https://machinelearningmastery.com/time-series-forecasting-methods-in-python-cheat-sheet/)
|
||||
- [Blockchain.com Data Scientist TakeHome Test](https://github.com/stalkermustang/bcdc_ds_takehome)
|
||||
- [Linear Regression for Business Statistics](https://www.coursera.org/learn/linear-regression-business-statistics#about)
|
||||
- [Linear Regression for Business Statistics](https://imp.i384100.net/9g97Ke)
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
# Statistics, CLT
|
||||
|
||||
- [Introduction to Statistics](https://coursera.org/learn/stanford-statistics#syllabus)
|
||||
- [Introduction to Statistics](https://imp.i384100.net/3eRv4v)
|
||||
|
||||
|
Reference in New Issue
Block a user