mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-17 05:28:37 +01:00
Create statcomppython
This is a tutorial on how to use Python for the stuff people normally do in R, MATLAB, or Stata. It's designed for someone comfortable with programming, basically familiar with Python, and experienced with a statistical programming language. Scraping the web, reading CSV files, summarizing columns, basic charts and plotting options, plus an extended data cleaning and exploratory data analysis example using a table of Holy Roman Emperors.
This commit is contained in:
parent
bb8342ca4c
commit
4196b7addd
234
statcomppython
Normal file
234
statcomppython
Normal file
@ -0,0 +1,234 @@
|
||||
---
|
||||
language: Statistical computing with Python
|
||||
contributors:
|
||||
- ["e99n09", "https://github.com/e99n09"]
|
||||
filename: statcomppython.py
|
||||
---
|
||||
|
||||
This is a tutorial on how to do some typical statistical programming tasks using Python. It's intended for people basically familiar with Python and experienced at statistical programming in a language like R, Stata, SAS, SPSS, or MATLAB.
|
||||
|
||||
```python
|
||||
|
||||
# 0. Getting set up ====
|
||||
|
||||
""" Get set up with IPython and pip install the following: numpy, scipy, pandas,
|
||||
matplotlib, seaborn, requests.
|
||||
Make sure to do this tutorial in the IPython notebook so that you get
|
||||
the inline plots and easy documentation lookup.
|
||||
"""
|
||||
|
||||
# 1. Data acquisition ====
|
||||
|
||||
""" One reason people choose Python over R is that they intend to interact a lot
|
||||
with the web, either by scraping pages directly or requesting data through
|
||||
an API. You can do those things in R, but in the context of a project
|
||||
already using Python, there's a benefit to sticking with one language.
|
||||
"""
|
||||
|
||||
import requests # for HTTP requests (web scraping, APIs)
|
||||
import os
|
||||
|
||||
# web scraping
|
||||
r = requests.get("https://github.com/adambard/learnxinyminutes-docs")
|
||||
r.status_code # if 200, request was successful
|
||||
r.text # raw page source
|
||||
print(r.text) # prettily formatted
|
||||
# save the page source in a file:
|
||||
os.getcwd() # check what's the working directory
|
||||
f = open("learnxinyminutes.html","wb")
|
||||
f.write(r.text.encode("UTF-8"))
|
||||
f.close()
|
||||
|
||||
# downloading a csv
|
||||
fp = "https://raw.githubusercontent.com/adambard/learnxinyminutes-docs/master/"
|
||||
fn = "pets.csv"
|
||||
r = requests.get(fp + fn)
|
||||
print(r.text)
|
||||
f = open(fn,"wb")
|
||||
f.write(r.text.encode("UTF-8"))
|
||||
f.close()
|
||||
|
||||
""" for more on the requests module, including APIs, see
|
||||
http://docs.python-requests.org/en/latest/user/quickstart/
|
||||
"""
|
||||
|
||||
# 2. Reading a CSV file ====
|
||||
|
||||
""" Wes McKinney's pandas package gives you 'DataFrame' objects in Python. If
|
||||
you've used R, you will be familiar with the idea of the "data.frame" already.
|
||||
"""
|
||||
|
||||
import pandas as pd, numpy as np, scipy as sp
|
||||
pets = pd.read_csv(fn)
|
||||
pets
|
||||
# name age weight species
|
||||
# 0 fluffy 3 14 cat
|
||||
# 1 vesuvius 6 23 fish
|
||||
# 2 rex 5 34 dog
|
||||
|
||||
""" R users: note that Python, like most normal programming languages, starts
|
||||
indexing from 0. R is the unusual one for starting from 1.
|
||||
"""
|
||||
|
||||
# two different ways to print out a column
|
||||
pets.age
|
||||
pets["age"]
|
||||
|
||||
pets.head(2) # prints first 2 rows
|
||||
pets.tail(1) # prints last row
|
||||
|
||||
pets.name[1] # 'vesuvius'
|
||||
pets.species[0] # 'cat'
|
||||
pets["weight"][2] # 34
|
||||
|
||||
# in R, you would expect to get 3 rows doing this, but here you get 2:
|
||||
pets.age[0:2]
|
||||
# 0 3
|
||||
# 1 6
|
||||
|
||||
sum(pets.age)*2 # 28
|
||||
max(pets.weight) - min(pets.weight) # 20
|
||||
|
||||
""" If you are doing some serious linear algebra and number-crunching, you may
|
||||
just want arrays, not DataFrames. DataFrames are ideal for combining columns
|
||||
of different types.
|
||||
"""
|
||||
|
||||
# 3. Charts ====
|
||||
|
||||
import matplotlib as mpl, matplotlib.pyplot as plt
|
||||
%matplotlib inline
|
||||
|
||||
# To do data vizualization in Python, use matplotlib
|
||||
|
||||
plt.hist(pets.age);
|
||||
|
||||
plt.boxplot(pets.weight);
|
||||
|
||||
plt.scatter(pets.age, pets.weight); plt.xlabel("age"); plt.ylabel("weight");
|
||||
|
||||
# seaborn sits atop matplotlib and makes plots prettier
|
||||
|
||||
import seaborn as sns
|
||||
|
||||
plt.scatter(pets.age, pets.weight); plt.xlabel("age"); plt.ylabel("weight");
|
||||
|
||||
# there are also some seaborn-specific plotting functions
|
||||
# notice how seaborn automatically labels the x-axis on this barplot
|
||||
sns.barplot(pets["age"])
|
||||
|
||||
# R veterans can still use ggplot
|
||||
from ggplot import *
|
||||
ggplot(aes(x="age",y="weight"), data=pets) + geom_point() + labs(title="pets")
|
||||
# source: https://pypi.python.org/pypi/ggplot
|
||||
|
||||
# there's even a d3.js port: https://github.com/mikedewar/d3py
|
||||
|
||||
# 4. Simple data cleaning and exploratory analysis ====
|
||||
|
||||
""" Here's a more complicated example that demonstrates a basic data
|
||||
cleaning workflow leading to the creation of some exploratory plots
|
||||
and the running of a linear regression.
|
||||
The data set was transcribed from Wikipedia by hand. It contains
|
||||
all the Holy Roman Emperors and the important milestones in their lives
|
||||
(birth, death, coronation, etc.).
|
||||
The goal of the analysis will be to explore whether a relationship
|
||||
exists between emperor birth year and emperor lifespan.
|
||||
data source: https://en.wikipedia.org/wiki/Holy_Roman_Emperor
|
||||
"""
|
||||
|
||||
# load some data on Holy Roman Emperors
|
||||
url = "https://raw.githubusercontent.com/e99n09/R-notes/master/data/hre.csv"
|
||||
r = requests.get(url)
|
||||
fp = "hre.csv"
|
||||
f = open(fp,"wb")
|
||||
f.write(r.text.encode("UTF-8"))
|
||||
f.close()
|
||||
|
||||
hre = pd.read_csv(fp)
|
||||
|
||||
hre.head()
|
||||
"""
|
||||
Ix Dynasty Name Birth Death Election 1
|
||||
0 NaN Carolingian Charles I 2 April 742 28 January 814 NaN
|
||||
1 NaN Carolingian Louis I 778 20 June 840 NaN
|
||||
2 NaN Carolingian Lothair I 795 29 September 855 NaN
|
||||
3 NaN Carolingian Louis II 825 12 August 875 NaN
|
||||
4 NaN Carolingian Charles II 13 June 823 6 October 877 NaN
|
||||
|
||||
Election 2 Coronation 1 Coronation 2 Ceased to be Emperor
|
||||
0 NaN 25 December 800 NaN 28 January 814
|
||||
1 NaN 11 September 813 5 October 816 20 June 840
|
||||
2 NaN 5 April 823 NaN 29 September 855
|
||||
3 NaN Easter 850 18 May 872 12 August 875
|
||||
4 NaN 29 December 875 NaN 6 October 877
|
||||
|
||||
Descent from whom 1 Descent how 1 Descent from whom 2 Descent how 2
|
||||
0 NaN NaN NaN NaN
|
||||
1 Charles I son NaN NaN
|
||||
2 Louis I son NaN NaN
|
||||
3 Lothair I son NaN NaN
|
||||
4 Louis I son NaN NaN
|
||||
"""
|
||||
|
||||
# clean the Birth and Death columns
|
||||
|
||||
import re # module for regular expressions
|
||||
|
||||
rx = re.compile(r'\d+$') # match trailing digits
|
||||
|
||||
""" This function applies the regular expression to an input column (here Birth,
|
||||
Death), flattens the resulting list, converts it to a Series object, and
|
||||
finally converts the type of the Series object from string to integer. For
|
||||
more information into what different parts of the code do, see:
|
||||
- https://docs.python.org/2/howto/regex.html
|
||||
- http://stackoverflow.com/questions/11860476/how-to-unlist-a-python-list
|
||||
- http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html
|
||||
"""
|
||||
def extractYear(v):
|
||||
return(pd.Series(reduce(lambda x,y: x+y,map(rx.findall,v),[])).astype(int))
|
||||
|
||||
hre["BirthY"] = extractYear(hre.Birth)
|
||||
hre["DeathY"] = extractYear(hre.Death)
|
||||
|
||||
# make a column telling estimated age
|
||||
hre["EstAge"] = hre.DeathY.astype(int) - hre.BirthY.astype(int)
|
||||
|
||||
# simple scatterplot, no trend line, color represents dynasty
|
||||
sns.lmplot("BirthY", "EstAge", data=hre, hue="Dynasty", fit_reg=False);
|
||||
|
||||
# use scipy to run a linear regression
|
||||
from scipy import stats
|
||||
(slope,intercept,rval,pval,stderr)=stats.linregress(hre.BirthY,hre.EstAge)
|
||||
# code source: http://wiki.scipy.org/Cookbook/LinearRegression
|
||||
|
||||
# check the slope
|
||||
slope # 0.0057672618839073328
|
||||
|
||||
# check the R^2 value:
|
||||
rval**2 # 0.020363950027333586
|
||||
|
||||
# check the p-value
|
||||
pval # 0.34971812581498452
|
||||
|
||||
# use seaborn to make a scatterplot and plot the linear regression trend line
|
||||
sns.lmplot("BirthY", "EstAge", data=hre);
|
||||
|
||||
""" For more information on seaborn, see
|
||||
- http://web.stanford.edu/~mwaskom/software/seaborn/
|
||||
- https://github.com/mwaskom/seaborn
|
||||
For more information on SciPy, see
|
||||
- http://wiki.scipy.org/SciPy
|
||||
- http://wiki.scipy.org/Cookbook/
|
||||
To see a version of the Holy Roman Emperors analysis using R, see
|
||||
- http://github.com/e99n09/R-notes/blob/master/holy_roman_emperors_dates.R
|
||||
"""
|
||||
```
|
||||
|
||||
If you want to learn more, get _Python for Data Analysis_ by Wes McKinney. It's a superb resource and I used it as a reference when writing this tutorial.
|
||||
|
||||
You can also find plenty of interactive IPython tutorials on subjects specific to your interests, like Cam Davidson-Pilon's <a href="http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/" Title="Probabilistic Programming and Bayesian Methods for Hackers">Probabilistic Programming and Bayesian Methods for Hackers</a>.
|
||||
|
||||
Some more modules to research:
|
||||
- text analysis and natural language processing: nltk, http://www.nltk.org
|
||||
- social network analysis: igraph, http://igraph.org/python/
|
Loading…
x
Reference in New Issue
Block a user