1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-01-17 21:49:22 +01:00

[c++/cn] translation started.

This commit is contained in:
Arnie97 2015-03-14 12:42:52 +08:00
parent fbb40a69af
commit 7c3de40807

579
zh-cn/c++-cn.html.markdown Normal file
View File

@ -0,0 +1,579 @@
---
language: c++
filename: learncpp.cpp
contributors:
- ["Steven Basart", "http://github.com/xksteven"]
- ["Matt Kline", "https://github.com/mrkline"]
translators:
- ["Arnie97", "https://github.com/Arnie97"]
lang: zh-cn
---
C++是一種系統編程語言。用它的發明者,
[Bjarne Stroustrup的話](http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2014/Keynote)來說C++的設計目標是:
- 成爲「更好的C語言」
- 支持數據的抽象與封裝
- 支持面向對象編程
- 支持泛型編程
C++提供了對硬件的緊密控制正如C語言一樣
能夠編譯爲機器語言,由處理器直接執行。
與此同時,它也提供了泛型、異常和類等高層功能。
雖然C++的語法可能比某些出現較晚的語言更複雜,它仍然得到了人們的青睞——
功能與速度的平衡使C++成爲了目前應用最廣泛的系統編程語言之一。
```c++
////////////////
// 與C語言的比較
////////////////
// C++_幾乎_是C語言的一個超集它與C語言的基本語法有許多相同之處
// 例如變量和函數的聲明,原生數據類型等等。
// 和C語言一樣在C++中你的程序會從main()開始執行,
// 該函數的返回值應當爲int型這個返回值會作爲程序的退出狀態值。
// 不過大多數的編譯器gccclang等也接受 void main() 的函數原型。
// (參見 http://en.wikipedia.org/wiki/Exit_status 來獲取更多信息)
int main(int argc, char** argv)
{
// 和C語言一樣命令行參數通過argc和argv傳遞。
// argc代表命令行參數的數量
// 而argv是一個包含“C語言風格字符串”char *)的數組,
// 其中每個字符串代表一個命令行參數的內容,
// 首個命令行參數是調用該程序時所使用的名稱。
// 如果你不關心命令行參數的值argc和argv可以被忽略。
// 此時你可以用int main()作爲函數原型。
// 退出狀態值爲0時表示程序執行成功
return 0;
}
// 然而C++和C語言也有一些區別
// 在C++中,字符字面量的大小是一個字節。
sizeof('c') == 1
// 在C語言中字符字面量的大小與int相同。
sizeof('c') == sizeof(10)
// C++的函數原型與函數定義是嚴格匹配的
void func(); // 這個函數不能接受任何參數
// 而在C語言中
void func(); // 這個函數能接受任意數量的參數
// 在C++中用nullptr代替C語言中的NULL
int* ip = nullptr;
// C++也可以使用C語言的標準頭文件
// 但是需要加上前綴“c”並去掉末尾的“.h”。
#include <cstdio>
int main()
{
printf("Hello, world!\n");
return 0;
}
///////////
// 函數重載
///////////
// C++支持函數重載provided each function takes different parameters.
void print(char const* myString)
{
printf("String %s\n", myString);
}
void print(int myInt)
{
printf("My int is %d", myInt);
}
int main()
{
print("Hello"); // 解析爲 void print(const char*)
print(15); // 解析爲 void print(int)
}
///////////////////
// 函數參數的默認值
///////////////////
// 你可以爲函數的參數指定默認值,
// 它們將會在調用者沒有提供相應參數時被使用。
void doSomethingWithInts(int a = 1, int b = 4)
{
// 對兩個參數進行一些操作
}
int main()
{
doSomethingWithInts(); // a = 1, b = 4
doSomethingWithInts(20); // a = 20, b = 4
doSomethingWithInts(20, 5); // a = 20, b = 5
}
// 默認參數必須放在所有的常規參數之後。
void invalidDeclaration(int a = 1, int b) // 這是錯誤的!
{
}
///////////
// 命名空間
///////////
// 命名空間爲變量、函數和其他聲明提供了【separate】的作用域。
// 命名空間可以嵌套使用。
namespace First {
namespace Nested {
void foo()
{
printf("This is First::Nested::foo\n");
}
} // end namespace Nested
} // end namespace First
namespace Second {
void foo()
{
printf("This is Second::foo\n")
}
}
void foo()
{
printf("This is global foo\n");
}
int main()
{
// 如果沒有特別指定,所有【對象】都使用【取自】"Second"中的【聲明】。
using namespace Second;
foo(); // 顯示 "This is Second::foo"
First::Nested::foo(); // 顯示 "This is First::Nested::foo"
::foo(); // 顯示 "This is global foo"
}
////////////
// 輸入/輸出
////////////
// C++使用“流”來輸入輸出。
// cin、cout、和cerr分別代表stdin標準輸入、stdout標準輸出和stderr標準錯誤
// <<是流的插入運算符>>是流提取運算符。
#include <iostream> // Include for I/O streams
using namespace std; // 輸入輸出流在std命名空間也就是標準庫中。
int main()
{
int myInt;
// 在標準輸出(終端/顯示器)中顯示
cout << "Enter your favorite number:\n";
// 從標準輸入(鍵盤)獲得一個值
cin >> myInt;
// cout can also be formatted
cout << "Your favorite number is " << myInt << "\n";
// 顯示 "Your favorite number is <myInt>"
cerr << "Used for error messages";
}
/////////
// 字符串
/////////
// C++中的字符串是對象,它們有很多成員函數
#include <string>
using namespace std; // 字符串也在std命名空間標準庫中。
string myString = "Hello";
string myOtherString = " World";
// + 可以用於連接字符串。
cout << myString + myOtherString; // "Hello World"
cout << myString + " You"; // "Hello You"
// C++中的字符串是可變的,具有“值語義”。
myString.append(" Dog");
cout << myString; // "Hello Dog"
/////////////
// 引用
/////////////
// 除了支持C語言中的指針類型以外C++還提供了_引用_。
// 引用是一種特殊的指針類型,一旦被定義就不能重新賦值,並且引用不能被設置爲空值。
// 使用引用時的語法與原變量相同:
// 也就是說,對引用類型進行解引用時,不需要使用*
// 賦值時也不需要用&來取地址。
using namespace std;
string foo = "I am foo";
string bar = "I am bar";
string& fooRef = foo; // 建立了一個對foo的引用。
fooRef += ". Hi!"; // 通過引用來修改foo的值
cout << fooRef; // "I am foo. Hi!"
// 這句話的並不會改變fooRef的指向其效果與“foo = bar”相同。
// 也就是說在執行這條語句之後foo == "I am bar"。
fooRef = bar;
const string& barRef = bar; // 建立指向bar的【const ref】。
// 和C語言中一樣聲明爲常數的值包括指針和引用不能被修改。
barRef += ". Hi!"; // 這是錯誤的【const ref】不能被修改。
///////////////////
// 類與面向對象編程
///////////////////
// 有關類的第一個示例
#include <iostream>
// 聲明一個類。
// 類通常在頭文件(.h或.hpp中聲明。
class Dog {
// 成員變量和成員函數默認情況下是私有private的。
std::string name;
int weight;
// 在這個標籤之後所有聲明都是公有public
// 直到重新指定“private:”私有繼承或“protected:”(保護繼承)爲止
public:
// 默認的構造器
Dog();
// Member function declarations (implementations to follow)
// Note that we use std::string here instead of placing
// using namespace std;
// above.
// Never put a "using namespace" statement in a header.
void setName(const std::string& dogsName);
void setWeight(int dogsWeight);
// Functions that do not modify the state of the object
// should be marked as const.
// This allows you to call them if given a const reference to the object.
// Also note the functions must be explicitly declared as _virtual_
// in order to be overridden in derived classes.
// Functions are not virtual by default for performance reasons.
virtual void print() const;
// 函數也可以在class body內部定義。
// 這樣定義的函數會自動成爲內聯函數。
void bark() const { std::cout << name << " barks!\n" }
// 除了構造器以外C++還提供了析構器。
// These are called when an object is deleted or falls out of scope.
// 這使得如同下文中的RAII這樣的強大範式成爲可能。
// Destructors must be virtual to allow classes to be derived from this one.
virtual ~Dog();
}; // 在類的定義後必須加一個分號
// 類的成員函數通常在.cpp文件中實現。
void Dog::Dog()
{
std::cout << "A dog has been constructed\n";
}
// 對象(例如字符串)應當以引用的形式傳遞,
// 不需要修改的對象則應當作爲【const ref】。
void Dog::setName(const std::string& dogsName)
{
name = dogsName;
}
void Dog::setWeight(int dogsWeight)
{
weight = dogsWeight;
}
// Notice that "virtual" is only needed in the declaration, not the definition.
void Dog::print() const
{
std::cout << "Dog is " << name << " and weighs " << weight << "kg\n";
}
void Dog::~Dog()
{
cout << "Goodbye " << name << "\n";
}
int main() {
Dog myDog; // 此時顯示“A dog has been constructed”
myDog.setName("Barkley");
myDog.setWeight(10);
myDog.printDog(); // 顯示“Dog is Barkley and weighs 10 kg”
return 0;
} // 顯示“Goodbye Barkley”
// 繼承:
// 這個類繼承了Dog類中的公有public和保護protected對象
class OwnedDog : public Dog {
void setOwner(const std::string& dogsOwner)
// 重寫OwnedDogs類的print方法。
// 如果你不熟悉子類多態的話,可以參考這個頁面中的概述:
// http://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping
// override關鍵字是可選的它確保你是在重寫基類中的方法。
void print() const override;
private:
std::string owner;
};
// 與此同時,在對應的.cpp文件裏
void OwnedDog::setOwner(const std::string& dogsOwner)
{
owner = dogsOwner;
}
void OwnedDog::print() const
{
Dog::print(); // 調用基類Dog中的print方法
// "Dog is <name> and weights <weight>"
std::cout << "Dog is owned by " << owner << "\n";
// "Dog is owned by <owner>"
}
/////////////////////
// 初始化與運算符重載
/////////////////////
// 在C++中,你可以重載+、-、*、/等運算符的行爲。
// This is done by defining a function
// which is called whenever the operator is used.
#include <iostream>
using namespace std;
class Point {
public:
// 可以以這樣的方式爲成員變量設置默認值。
double x = 0;
double y = 0;
// Define a default constructor which does nothing
// but initialize the Point to the default value (0, 0)
Point() { };
// The following syntax is known as an initialization list
// and is the proper way to initialize class member values
Point (double a, double b) :
x(a),
y(b)
{ /* Do nothing except initialize the values */ }
// 重載 + 運算符
Point operator+(const Point& rhs) const;
// 重載 += 運算符
Point& operator+=(const Point& rhs);
// 增加 - 和 -= 運算符也是有意義的,這裏不再贅述。
};
Point Point::operator+(const Point& rhs) const
{
// Create a new point that is the sum of this one and rhs.
return Point(x + rhs.x, y + rhs.y);
}
Point& Point::operator+=(const Point& rhs)
{
x += rhs.x;
y += rhs.y;
return *this;
}
int main () {
Point up (0,1);
Point right (1,0);
// 這裏調用了Point類型的運算符“+”
// 調用upPoint類型的“+”方法並以right作爲函數的參數
Point result = up + right;
// 顯示“Result is upright (1,1)”
cout << "Result is upright (" << result.x << ',' << result.y << ")\n";
return 0;
}
///////////
// 異常處理
///////////
// 標準庫中提供了a few exception types
// 參見http://en.cppreference.com/w/cpp/error/exception
// but any type can be thrown an as exception
#include <exception>
// All exceptions thrown inside the _try_ block can be caught by subsequent
// _catch_ handlers.
try {
// Do not allocate exceptions on the heap using _new_.
throw std::exception("A problem occurred");
}
// Catch exceptions by const reference if they are objects
catch (const std::exception& ex)
{
std::cout << ex.what();
// Catches any exception not caught by previous _catch_ blocks
} catch (...)
{
std::cout << "Unknown exception caught";
throw; // Re-throws the exception
}
///////
// RAII
///////
// RAII指的是“资源获取就是初始化”Resource Allocation Is Initialization
// It is often considered the most powerful paradigm in C++,
// and is the simple concept that a constructor for an object
// acquires that object's resources and the destructor releases them.
// 爲了理解這一範式的用處,讓我們考慮某個函數使用文件句柄時的情況:
void doSomethingWithAFile(const char* filename)
{
// 首先,讓我們假設一切都會順利進行。
FILE* fh = fopen(filename, "r"); // 以只讀模式打開文件
doSomethingWithTheFile(fh);
doSomethingElseWithIt(fh);
fclose(fh); // 關閉文件句柄
}
// 不幸的是,隨着錯誤處理機制的引入,事情會變得複雜。
// 假設fopen有可能執行失敗
// 而doSomethingWithTheFile和doSomethingElseWithIt會在失敗時返回錯誤代碼。
// 雖然【Exceptions】是處理錯誤的推薦方式
// 但是某些程序員尤其是有C語言背景的並不認可【exceptions】的效用
// 現在,我們必須檢查每個函數調用是否成功執行,並在問題發生的時候關閉文件句柄。
bool doSomethingWithAFile(const char* filename)
{
FILE* fh = fopen(filename, "r"); // 以只讀模式打開文件
if (fh == nullptr) // 當執行失敗是返回的指針是nullptr
return false; // 向調用者彙報錯誤
// 假設每個函數會在執行失敗時返回false
if (!doSomethingWithTheFile(fh)) {
fclose(fh); // Close the file handle so it doesn't leak.
return false; // 反饋錯誤
}
if (!doSomethingElseWithIt(fh)) {
fclose(fh); // Close the file handle so it doesn't leak.
return false; // 反饋錯誤
}
fclose(fh); // Close the file handle so it doesn't leak.
return true; // 指示函數已成功執行
}
// C語言的程序員通常會借助goto語句簡化上面的代碼
bool doSomethingWithAFile(const char* filename)
{
FILE* fh = fopen(filename, "r");
if (fh == nullptr)
return false;
if (!doSomethingWithTheFile(fh))
goto failure;
if (!doSomethingElseWithIt(fh))
goto failure;
fclose(fh); // 關閉文件
return true; // 執行成功
failure:
fclose(fh);
return false; // 反饋錯誤
}
// If the functions indicate errors using exceptions,
// things are a little cleaner, but still sub-optimal.
void doSomethingWithAFile(const char* filename)
{
FILE* fh = fopen(filename, "r"); // 以只讀模式打開文件
if (fh == nullptr)
throw std::exception("Could not open the file.");
try {
doSomethingWithTheFile(fh);
doSomethingElseWithIt(fh);
}
catch (...) {
fclose(fh); // 保證出錯的時候文件被正確關閉
throw; // Then re-throw the exception.
}
fclose(fh); // 關閉文件
// 所有工作順利完成
}
// Compare this to the use of C++'s file stream class (fstream)
// fstream利用自己的析構器來關閉文件句柄。
// Recall from above that destructors are automatically called
// whenver an object falls out of scope.
void doSomethingWithAFile(const std::string& filename)
{
// ifstream is short for input file stream
std::ifstream fh(filename); // Open the file
// 對文件進行一些操作
doSomethingWithTheFile(fh);
doSomethingElseWithIt(fh);
} // 文件已經被析構器自動關閉
// 與上面幾種方式相比這種方式有着_明顯_的優勢
// 1. 無論發生了什麼情況,資源(此例當中是文件句柄)都會被正確關閉。
// 只要你正確使用了析構器就_不會_因爲忘記關閉句柄造成資源的泄漏。
// 2. Note that the code is much cleaner.
// The destructor handles closing the file behind the scenes
// without you having to worry about it.
// 3. The code is exception safe.
// An exception can be thrown anywhere in the function and cleanup
// will still occur.
// All idiomatic C++ code uses RAII extensively for all resources.
// Additional examples include
// - Memory using unique_ptr and shared_ptr
// - Containers - the standard library linked list,
// vector (i.e. self-resizing array), hash maps, and so on
// all automatically destroy their contents when they fall out of scope.
// - Mutexes using lock_guard and unique_lock
```
擴展閱讀:
<http://cppreference.com/w/cpp> 提供了最新的語法參考。
可以在 <http://cplusplus.com> 找到一些補充資料。