mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-17 13:38:38 +01:00
Initial commit
This commit is contained in:
parent
fb9c7b9102
commit
c3fb66cd6d
450
pl-pl/haskell-pl.html.markdown
Normal file
450
pl-pl/haskell-pl.html.markdown
Normal file
@ -0,0 +1,450 @@
|
||||
---
|
||||
language: Haskell
|
||||
lang: pl-pl
|
||||
contributors:
|
||||
- ["Remigiusz Suwalski", "https://github.com/remigiusz-suwalski"]
|
||||
---
|
||||
|
||||
Haskell został zaprojektowany jako praktyczy, czysto funkcyjny język
|
||||
programowania. Jest znany przede wszystkim ze względu na jego monady oraz system
|
||||
typów, ale ja lubię do niego wracać przez jego elegancję. Sprawił on, że
|
||||
programowanie jest prawdziwą przyjemnością.
|
||||
|
||||
```haskell
|
||||
-- Komentarze jednolinijkowe zaczynają się od dwóch myślników
|
||||
{- Komentarze wielolinijkowe należy
|
||||
zamykać w bloki klamrami.
|
||||
-}
|
||||
|
||||
----------------------------------------------------
|
||||
-- 1. Primitive Datatypes and Operators
|
||||
----------------------------------------------------
|
||||
|
||||
-- You have numbers
|
||||
3 -- 3
|
||||
|
||||
-- Math is what you would expect
|
||||
1 + 1 -- 2
|
||||
8 - 1 -- 7
|
||||
10 * 2 -- 20
|
||||
35 / 5 -- 7.0
|
||||
|
||||
-- Division is not integer division by default
|
||||
35 / 4 -- 8.75
|
||||
|
||||
-- integer division
|
||||
35 `div` 4 -- 8
|
||||
|
||||
-- Boolean values are primitives
|
||||
True
|
||||
False
|
||||
|
||||
-- Boolean operations
|
||||
not True -- False
|
||||
not False -- True
|
||||
1 == 1 -- True
|
||||
1 /= 1 -- False
|
||||
1 < 10 -- True
|
||||
|
||||
-- In the above examples, `not` is a function that takes one value.
|
||||
-- Haskell doesn't need parentheses for function calls...all the arguments
|
||||
-- are just listed after the function. So the general pattern is:
|
||||
-- func arg1 arg2 arg3...
|
||||
-- See the section on functions for information on how to write your own.
|
||||
|
||||
-- Strings and characters
|
||||
"This is a string."
|
||||
'a' -- character
|
||||
'You cant use single quotes for strings.' -- error!
|
||||
|
||||
-- Strings can be concatenated
|
||||
"Hello " ++ "world!" -- "Hello world!"
|
||||
|
||||
-- A string is a list of characters
|
||||
['H', 'e', 'l', 'l', 'o'] -- "Hello"
|
||||
"This is a string" !! 0 -- 'T'
|
||||
|
||||
|
||||
----------------------------------------------------
|
||||
-- Lists and Tuples
|
||||
----------------------------------------------------
|
||||
|
||||
-- Every element in a list must have the same type.
|
||||
-- These two lists are the same:
|
||||
[1, 2, 3, 4, 5]
|
||||
[1..5]
|
||||
|
||||
-- Ranges are versatile.
|
||||
['A'..'F'] -- "ABCDEF"
|
||||
|
||||
-- You can create a step in a range.
|
||||
[0,2..10] -- [0, 2, 4, 6, 8, 10]
|
||||
[5..1] -- This doesn't work because Haskell defaults to incrementing.
|
||||
[5,4..1] -- [5, 4, 3, 2, 1]
|
||||
|
||||
-- indexing into a list
|
||||
[1..10] !! 3 -- 4
|
||||
|
||||
-- You can also have infinite lists in Haskell!
|
||||
[1..] -- a list of all the natural numbers
|
||||
|
||||
-- Infinite lists work because Haskell has "lazy evaluation". This means
|
||||
-- that Haskell only evaluates things when it needs to. So you can ask for
|
||||
-- the 1000th element of your list and Haskell will give it to you:
|
||||
|
||||
[1..] !! 999 -- 1000
|
||||
|
||||
-- And now Haskell has evaluated elements 1 - 1000 of this list...but the
|
||||
-- rest of the elements of this "infinite" list don't exist yet! Haskell won't
|
||||
-- actually evaluate them until it needs to.
|
||||
|
||||
-- joining two lists
|
||||
[1..5] ++ [6..10]
|
||||
|
||||
-- adding to the head of a list
|
||||
0:[1..5] -- [0, 1, 2, 3, 4, 5]
|
||||
|
||||
-- more list operations
|
||||
head [1..5] -- 1
|
||||
tail [1..5] -- [2, 3, 4, 5]
|
||||
init [1..5] -- [1, 2, 3, 4]
|
||||
last [1..5] -- 5
|
||||
|
||||
-- list comprehensions
|
||||
[x*2 | x <- [1..5]] -- [2, 4, 6, 8, 10]
|
||||
|
||||
-- with a conditional
|
||||
[x*2 | x <- [1..5], x*2 > 4] -- [6, 8, 10]
|
||||
|
||||
-- Every element in a tuple can be a different type, but a tuple has a
|
||||
-- fixed length.
|
||||
-- A tuple:
|
||||
("haskell", 1)
|
||||
|
||||
-- accessing elements of a pair (i.e. a tuple of length 2)
|
||||
fst ("haskell", 1) -- "haskell"
|
||||
snd ("haskell", 1) -- 1
|
||||
|
||||
----------------------------------------------------
|
||||
-- 3. Functions
|
||||
----------------------------------------------------
|
||||
-- A simple function that takes two variables
|
||||
add a b = a + b
|
||||
|
||||
-- Note that if you are using ghci (the Haskell interpreter)
|
||||
-- You'll need to use `let`, i.e.
|
||||
-- let add a b = a + b
|
||||
|
||||
-- Using the function
|
||||
add 1 2 -- 3
|
||||
|
||||
-- You can also put the function name between the two arguments
|
||||
-- with backticks:
|
||||
1 `add` 2 -- 3
|
||||
|
||||
-- You can also define functions that have no letters! This lets
|
||||
-- you define your own operators! Here's an operator that does
|
||||
-- integer division
|
||||
(//) a b = a `div` b
|
||||
35 // 4 -- 8
|
||||
|
||||
-- Guards: an easy way to do branching in functions
|
||||
fib x
|
||||
| x < 2 = 1
|
||||
| otherwise = fib (x - 1) + fib (x - 2)
|
||||
|
||||
-- Pattern matching is similar. Here we have given three different
|
||||
-- definitions for fib. Haskell will automatically call the first
|
||||
-- function that matches the pattern of the value.
|
||||
fib 1 = 1
|
||||
fib 2 = 2
|
||||
fib x = fib (x - 1) + fib (x - 2)
|
||||
|
||||
-- Pattern matching on tuples:
|
||||
foo (x, y) = (x + 1, y + 2)
|
||||
|
||||
-- Pattern matching on lists. Here `x` is the first element
|
||||
-- in the list, and `xs` is the rest of the list. We can write
|
||||
-- our own map function:
|
||||
myMap func [] = []
|
||||
myMap func (x:xs) = func x:(myMap func xs)
|
||||
|
||||
-- Anonymous functions are created with a backslash followed by
|
||||
-- all the arguments.
|
||||
myMap (\x -> x + 2) [1..5] -- [3, 4, 5, 6, 7]
|
||||
|
||||
-- using fold (called `inject` in some languages) with an anonymous
|
||||
-- function. foldl1 means fold left, and use the first value in the
|
||||
-- list as the initial value for the accumulator.
|
||||
foldl1 (\acc x -> acc + x) [1..5] -- 15
|
||||
|
||||
----------------------------------------------------
|
||||
-- 4. More functions
|
||||
----------------------------------------------------
|
||||
|
||||
-- partial application: if you don't pass in all the arguments to a function,
|
||||
-- it gets "partially applied". That means it returns a function that takes the
|
||||
-- rest of the arguments.
|
||||
|
||||
add a b = a + b
|
||||
foo = add 10 -- foo is now a function that takes a number and adds 10 to it
|
||||
foo 5 -- 15
|
||||
|
||||
-- Another way to write the same thing
|
||||
foo = (10+)
|
||||
foo 5 -- 15
|
||||
|
||||
-- function composition
|
||||
-- the operator `.` chains functions together.
|
||||
-- For example, here foo is a function that takes a value. It adds 10 to it,
|
||||
-- multiplies the result of that by 4, and then returns the final value.
|
||||
foo = (4*) . (10+)
|
||||
|
||||
-- 4*(10 + 5) = 60
|
||||
foo 5 -- 60
|
||||
|
||||
-- fixing precedence
|
||||
-- Haskell has another operator called `$`. This operator applies a function
|
||||
-- to a given parameter. In contrast to standard function application, which
|
||||
-- has highest possible priority of 10 and is left-associative, the `$` operator
|
||||
-- has priority of 0 and is right-associative. Such a low priority means that
|
||||
-- the expression on its right is applied as the parameter to the function on its left.
|
||||
|
||||
-- before
|
||||
even (fib 7) -- false
|
||||
|
||||
-- equivalently
|
||||
even $ fib 7 -- false
|
||||
|
||||
-- composing functions
|
||||
even . fib $ 7 -- false
|
||||
|
||||
|
||||
----------------------------------------------------
|
||||
-- 5. Type signatures
|
||||
----------------------------------------------------
|
||||
|
||||
-- Haskell has a very strong type system, and every valid expression has a type.
|
||||
|
||||
-- Some basic types:
|
||||
5 :: Integer
|
||||
"hello" :: String
|
||||
True :: Bool
|
||||
|
||||
-- Functions have types too.
|
||||
-- `not` takes a boolean and returns a boolean:
|
||||
-- not :: Bool -> Bool
|
||||
|
||||
-- Here's a function that takes two arguments:
|
||||
-- add :: Integer -> Integer -> Integer
|
||||
|
||||
-- When you define a value, it's good practice to write its type above it:
|
||||
double :: Integer -> Integer
|
||||
double x = x * 2
|
||||
|
||||
----------------------------------------------------
|
||||
-- 6. Control Flow and If Expressions
|
||||
----------------------------------------------------
|
||||
|
||||
-- if expressions
|
||||
haskell = if 1 == 1 then "awesome" else "awful" -- haskell = "awesome"
|
||||
|
||||
-- if expressions can be on multiple lines too, indentation is important
|
||||
haskell = if 1 == 1
|
||||
then "awesome"
|
||||
else "awful"
|
||||
|
||||
-- case expressions: Here's how you could parse command line arguments
|
||||
case args of
|
||||
"help" -> printHelp
|
||||
"start" -> startProgram
|
||||
_ -> putStrLn "bad args"
|
||||
|
||||
-- Haskell doesn't have loops; it uses recursion instead.
|
||||
-- map applies a function over every element in a list
|
||||
|
||||
map (*2) [1..5] -- [2, 4, 6, 8, 10]
|
||||
|
||||
-- you can make a for function using map
|
||||
for array func = map func array
|
||||
|
||||
-- and then use it
|
||||
for [0..5] $ \i -> show i
|
||||
|
||||
-- we could've written that like this too:
|
||||
for [0..5] show
|
||||
|
||||
-- You can use foldl or foldr to reduce a list
|
||||
-- foldl <fn> <initial value> <list>
|
||||
foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43
|
||||
|
||||
-- This is the same as
|
||||
(2 * (2 * (2 * 4 + 1) + 2) + 3)
|
||||
|
||||
-- foldl is left-handed, foldr is right-handed
|
||||
foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16
|
||||
|
||||
-- This is now the same as
|
||||
(2 * 1 + (2 * 2 + (2 * 3 + 4)))
|
||||
|
||||
----------------------------------------------------
|
||||
-- 7. Data Types
|
||||
----------------------------------------------------
|
||||
|
||||
-- Here's how you make your own data type in Haskell
|
||||
|
||||
data Color = Red | Blue | Green
|
||||
|
||||
-- Now you can use it in a function:
|
||||
|
||||
|
||||
say :: Color -> String
|
||||
say Red = "You are Red!"
|
||||
say Blue = "You are Blue!"
|
||||
say Green = "You are Green!"
|
||||
|
||||
-- Your data types can have parameters too:
|
||||
|
||||
data Maybe a = Nothing | Just a
|
||||
|
||||
-- These are all of type Maybe
|
||||
Just "hello" -- of type `Maybe String`
|
||||
Just 1 -- of type `Maybe Int`
|
||||
Nothing -- of type `Maybe a` for any `a`
|
||||
|
||||
----------------------------------------------------
|
||||
-- 8. Haskell IO
|
||||
----------------------------------------------------
|
||||
|
||||
-- While IO can't be explained fully without explaining monads,
|
||||
-- it is not hard to explain enough to get going.
|
||||
|
||||
-- When a Haskell program is executed, `main` is
|
||||
-- called. It must return a value of type `IO a` for some type `a`. For example:
|
||||
|
||||
main :: IO ()
|
||||
main = putStrLn $ "Hello, sky! " ++ (say Blue)
|
||||
-- putStrLn has type String -> IO ()
|
||||
|
||||
-- It is easiest to do IO if you can implement your program as
|
||||
-- a function from String to String. The function
|
||||
-- interact :: (String -> String) -> IO ()
|
||||
-- inputs some text, runs a function on it, and prints out the
|
||||
-- output.
|
||||
|
||||
countLines :: String -> String
|
||||
countLines = show . length . lines
|
||||
|
||||
main' = interact countLines
|
||||
|
||||
-- You can think of a value of type `IO ()` as representing a
|
||||
-- sequence of actions for the computer to do, much like a
|
||||
-- computer program written in an imperative language. We can use
|
||||
-- the `do` notation to chain actions together. For example:
|
||||
|
||||
sayHello :: IO ()
|
||||
sayHello = do
|
||||
putStrLn "What is your name?"
|
||||
name <- getLine -- this gets a line and gives it the name "name"
|
||||
putStrLn $ "Hello, " ++ name
|
||||
|
||||
-- Exercise: write your own version of `interact` that only reads
|
||||
-- one line of input.
|
||||
|
||||
-- The code in `sayHello` will never be executed, however. The only
|
||||
-- action that ever gets executed is the value of `main`.
|
||||
-- To run `sayHello` comment out the above definition of `main`
|
||||
-- and replace it with:
|
||||
-- main = sayHello
|
||||
|
||||
-- Let's understand better how the function `getLine` we just
|
||||
-- used works. Its type is:
|
||||
-- getLine :: IO String
|
||||
-- You can think of a value of type `IO a` as representing a
|
||||
-- computer program that will generate a value of type `a`
|
||||
-- when executed (in addition to anything else it does). We can
|
||||
-- name and reuse this value using `<-`. We can also
|
||||
-- make our own action of type `IO String`:
|
||||
|
||||
action :: IO String
|
||||
action = do
|
||||
putStrLn "This is a line. Duh"
|
||||
input1 <- getLine
|
||||
input2 <- getLine
|
||||
-- The type of the `do` statement is that of its last line.
|
||||
-- `return` is not a keyword, but merely a function
|
||||
return (input1 ++ "\n" ++ input2) -- return :: String -> IO String
|
||||
|
||||
-- We can use this just like we used `getLine`:
|
||||
|
||||
main'' = do
|
||||
putStrLn "I will echo two lines!"
|
||||
result <- action
|
||||
putStrLn result
|
||||
putStrLn "This was all, folks!"
|
||||
|
||||
-- The type `IO` is an example of a "monad". The way Haskell uses a monad to
|
||||
-- do IO allows it to be a purely functional language. Any function that
|
||||
-- interacts with the outside world (i.e. does IO) gets marked as `IO` in its
|
||||
-- type signature. This lets us reason about what functions are "pure" (don't
|
||||
-- interact with the outside world or modify state) and what functions aren't.
|
||||
|
||||
-- This is a powerful feature, because it's easy to run pure functions
|
||||
-- concurrently; so, concurrency in Haskell is very easy.
|
||||
|
||||
|
||||
----------------------------------------------------
|
||||
-- 9. The Haskell REPL
|
||||
----------------------------------------------------
|
||||
|
||||
-- Start the repl by typing `ghci`.
|
||||
-- Now you can type in Haskell code. Any new values
|
||||
-- need to be created with `let`:
|
||||
|
||||
let foo = 5
|
||||
|
||||
-- You can see the type of any value or expression with `:t`:
|
||||
|
||||
> :t foo
|
||||
foo :: Integer
|
||||
|
||||
-- Operators, such as `+`, `:` and `$`, are functions.
|
||||
-- Their type can be inspected by putting the operator in parentheses:
|
||||
|
||||
> :t (:)
|
||||
(:) :: a -> [a] -> [a]
|
||||
|
||||
-- You can get additional information on any `name` using `:i`:
|
||||
|
||||
> :i (+)
|
||||
class Num a where
|
||||
(+) :: a -> a -> a
|
||||
...
|
||||
-- Defined in ‘GHC.Num’
|
||||
infixl 6 +
|
||||
|
||||
-- You can also run any action of type `IO ()`
|
||||
|
||||
> sayHello
|
||||
What is your name?
|
||||
Friend!
|
||||
Hello, Friend!
|
||||
|
||||
```
|
||||
|
||||
There's a lot more to Haskell, including typeclasses and monads. These are the
|
||||
big ideas that make Haskell such fun to code in. I'll leave you with one final
|
||||
Haskell example: an implementation of a quicksort variant in Haskell:
|
||||
|
||||
```haskell
|
||||
qsort [] = []
|
||||
qsort (p:xs) = qsort lesser ++ [p] ++ qsort greater
|
||||
where lesser = filter (< p) xs
|
||||
greater = filter (>= p) xs
|
||||
```
|
||||
|
||||
There are two popular ways to install Haskell: The traditional [Cabal-based installation](http://www.haskell.org/platform/), and the newer [Stack-based process](https://www.stackage.org/install).
|
||||
|
||||
You can find a much gentler introduction from the excellent
|
||||
[Learn you a Haskell](http://learnyouahaskell.com/) or
|
||||
[Real World Haskell](http://book.realworldhaskell.org/).
|
Loading…
x
Reference in New Issue
Block a user