mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-17 13:38:38 +01:00
[julia/en] fix for #1483
This commit is contained in:
parent
e867dfd7b6
commit
f894add86a
@ -114,12 +114,12 @@ println("I'm Julia. Nice to meet you!") # => I'm Julia. Nice to meet you!
|
||||
####################################################
|
||||
|
||||
# You don't declare variables before assigning to them.
|
||||
some_var = 5 # => 5
|
||||
some_var # => 5
|
||||
someVar = 5 # => 5
|
||||
someVar # => 5
|
||||
|
||||
# Accessing a previously unassigned variable is an error
|
||||
try
|
||||
some_other_var # => ERROR: UndefVarError: some_other_var not defined
|
||||
someOtherVar # => ERROR: UndefVarError: someOtherVar not defined
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
@ -286,62 +286,62 @@ d # => 5
|
||||
e # => 4
|
||||
|
||||
# Dictionaries store mappings
|
||||
empty_dict = Dict() # => Dict{Any,Any} with 0 entries
|
||||
emptyDict = Dict() # => Dict{Any,Any} with 0 entries
|
||||
|
||||
# You can create a dictionary using a literal
|
||||
filled_dict = Dict("one" => 1, "two" => 2, "three" => 3)
|
||||
filledDict = Dict("one" => 1, "two" => 2, "three" => 3)
|
||||
# => Dict{String,Int64} with 3 entries:
|
||||
# => "two" => 2, "one" => 1, "three" => 3
|
||||
|
||||
# Look up values with []
|
||||
filled_dict["one"] # => 1
|
||||
filledDict["one"] # => 1
|
||||
|
||||
# Get all keys
|
||||
keys(filled_dict)
|
||||
keys(filledDict)
|
||||
# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys:
|
||||
# => "two", "one", "three"
|
||||
# Note - dictionary keys are not sorted or in the order you inserted them.
|
||||
|
||||
# Get all values
|
||||
values(filled_dict)
|
||||
values(filledDict)
|
||||
# => Base.ValueIterator for a Dict{String,Int64} with 3 entries. Values:
|
||||
# => 2, 1, 3
|
||||
# Note - Same as above regarding key ordering.
|
||||
|
||||
# Check for existence of keys in a dictionary with in, haskey
|
||||
in(("one" => 1), filled_dict) # => true
|
||||
in(("two" => 3), filled_dict) # => false
|
||||
haskey(filled_dict, "one") # => true
|
||||
haskey(filled_dict, 1) # => false
|
||||
in(("one" => 1), filledDict) # => true
|
||||
in(("two" => 3), filledDict) # => false
|
||||
haskey(filledDict, "one") # => true
|
||||
haskey(filledDict, 1) # => false
|
||||
|
||||
# Trying to look up a non-existent key will raise an error
|
||||
try
|
||||
filled_dict["four"] # => ERROR: KeyError: key "four" not found
|
||||
filledDict["four"] # => ERROR: KeyError: key "four" not found
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# Use the get method to avoid that error by providing a default value
|
||||
# get(dictionary, key, default_value)
|
||||
get(filled_dict, "one", 4) # => 1
|
||||
get(filled_dict, "four", 4) # => 4
|
||||
# get(dictionary, key, defaultValue)
|
||||
get(filledDict, "one", 4) # => 1
|
||||
get(filledDict, "four", 4) # => 4
|
||||
|
||||
# Use Sets to represent collections of unordered, unique values
|
||||
empty_set = Set() # => Set(Any[])
|
||||
emptySet = Set() # => Set(Any[])
|
||||
# Initialize a set with values
|
||||
filled_set = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
|
||||
filledSet = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
|
||||
|
||||
# Add more values to a set
|
||||
push!(filled_set, 5) # => Set([4, 2, 3, 5, 1])
|
||||
push!(filledSet, 5) # => Set([4, 2, 3, 5, 1])
|
||||
|
||||
# Check if the values are in the set
|
||||
in(2, filled_set) # => true
|
||||
in(10, filled_set) # => false
|
||||
in(2, filledSet) # => true
|
||||
in(10, filledSet) # => false
|
||||
|
||||
# There are functions for set intersection, union, and difference.
|
||||
other_set = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
|
||||
intersect(filled_set, other_set) # => Set([4, 3, 5])
|
||||
union(filled_set, other_set) # => Set([4, 2, 3, 5, 6, 1])
|
||||
otherSet = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
|
||||
intersect(filledSet, otherSet) # => Set([4, 3, 5])
|
||||
union(filledSet, otherSet) # => Set([4, 2, 3, 5, 6, 1])
|
||||
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
|
||||
|
||||
####################################################
|
||||
@ -349,15 +349,15 @@ setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
|
||||
####################################################
|
||||
|
||||
# Let's make a variable
|
||||
some_var = 5
|
||||
someVar = 5
|
||||
|
||||
# Here is an if statement. Indentation is not meaningful in Julia.
|
||||
if some_var > 10
|
||||
println("some_var is totally bigger than 10.")
|
||||
elseif some_var < 10 # This elseif clause is optional.
|
||||
println("some_var is smaller than 10.")
|
||||
if someVar > 10
|
||||
println("someVar is totally bigger than 10.")
|
||||
elseif someVar < 10 # This elseif clause is optional.
|
||||
println("someVar is smaller than 10.")
|
||||
else # The else clause is optional too.
|
||||
println("some_var is indeed 10.")
|
||||
println("someVar is indeed 10.")
|
||||
end
|
||||
# => prints "some var is smaller than 10"
|
||||
|
||||
@ -434,8 +434,8 @@ add(5, 6)
|
||||
# => 11
|
||||
|
||||
# Compact assignment of functions
|
||||
f_add(x, y) = x + y # => f_add (generic function with 1 method)
|
||||
f_add(3, 4) # => 7
|
||||
fAdd(x, y) = x + y # => fAdd (generic function with 1 method)
|
||||
fAdd(3, 4) # => 7
|
||||
|
||||
# Function can also return multiple values as tuple
|
||||
fn(x, y) = x + y, x - y # => fn (generic function with 1 method)
|
||||
@ -478,67 +478,67 @@ catch e
|
||||
end
|
||||
|
||||
# You can define functions that take keyword arguments
|
||||
function keyword_args(;k1=4, name2="hello") # note the ;
|
||||
function keywordArgs(;k1=4, name2="hello") # note the ;
|
||||
return Dict("k1" => k1, "name2" => name2)
|
||||
end
|
||||
# => keyword_args (generic function with 1 method)
|
||||
# => keywordArgs (generic function with 1 method)
|
||||
|
||||
keyword_args(name2="ness") # => ["name2"=>"ness", "k1"=>4]
|
||||
keyword_args(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"]
|
||||
keyword_args() # => ["name2"=>"hello", "k1"=>4]
|
||||
keywordArgs(name2="ness") # => ["name2"=>"ness", "k1"=>4]
|
||||
keywordArgs(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"]
|
||||
keywordArgs() # => ["name2"=>"hello", "k1"=>4]
|
||||
|
||||
# You can combine all kinds of arguments in the same function
|
||||
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
|
||||
println("normal arg: $normal_arg")
|
||||
println("optional arg: $optional_positional_arg")
|
||||
println("keyword arg: $keyword_arg")
|
||||
function allTheArgs(normalArg, optionalPositionalArg=2; keywordArg="foo")
|
||||
println("normal arg: $normalArg")
|
||||
println("optional arg: $optionalPositionalArg")
|
||||
println("keyword arg: $keywordArg")
|
||||
end
|
||||
# => all_the_args (generic function with 2 methods)
|
||||
# => allTheArgs (generic function with 2 methods)
|
||||
|
||||
all_the_args(1, 3, keyword_arg=4)
|
||||
allAheArgs(1, 3, keywordArg=4)
|
||||
# => normal arg: 1
|
||||
# => optional arg: 3
|
||||
# => keyword arg: 4
|
||||
|
||||
# Julia has first class functions
|
||||
function create_adder(x)
|
||||
function createAdder(x)
|
||||
adder = function (y)
|
||||
return x + y
|
||||
end
|
||||
return adder
|
||||
end
|
||||
# => create_adder (generic function with 1 method)
|
||||
# => createAdder (generic function with 1 method)
|
||||
|
||||
# This is "stabby lambda syntax" for creating anonymous functions
|
||||
(x -> x > 2)(3) # => true
|
||||
|
||||
# This function is identical to create_adder implementation above.
|
||||
function create_adder(x)
|
||||
# This function is identical to createAdder implementation above.
|
||||
function createAdder(x)
|
||||
y -> x + y
|
||||
end
|
||||
# => create_adder (generic function with 1 method)
|
||||
# => createAdder (generic function with 1 method)
|
||||
|
||||
# You can also name the internal function, if you want
|
||||
function create_adder(x)
|
||||
function createAdder(x)
|
||||
function adder(y)
|
||||
x + y
|
||||
end
|
||||
adder
|
||||
end
|
||||
# => create_adder (generic function with 1 method)
|
||||
# => createAdder (generic function with 1 method)
|
||||
|
||||
add_10 = create_adder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})
|
||||
add10 = createAdder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})
|
||||
# (generic function with 1 method)
|
||||
add_10(3) # => 13
|
||||
add10(3) # => 13
|
||||
|
||||
|
||||
# There are built-in higher order functions
|
||||
map(add_10, [1,2,3]) # => [11, 12, 13]
|
||||
map(add10, [1,2,3]) # => [11, 12, 13]
|
||||
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
|
||||
|
||||
# We can use list comprehensions
|
||||
[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13]
|
||||
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
|
||||
[add10(i) for i = [1, 2, 3]] # => [11, 12, 13]
|
||||
[add10(i) for i in [1, 2, 3]] # => [11, 12, 13]
|
||||
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
|
||||
|
||||
####################################################
|
||||
@ -616,7 +616,7 @@ supertype(SubString) # => AbstractString
|
||||
|
||||
# <: is the subtyping operator
|
||||
struct Lion <: Cat # Lion is a subtype of Cat
|
||||
mane_color
|
||||
maneColor
|
||||
roar::AbstractString
|
||||
end
|
||||
|
||||
@ -627,7 +627,7 @@ Lion(roar::AbstractString) = Lion("green", roar)
|
||||
# This is an outer constructor because it's outside the type definition
|
||||
|
||||
struct Panther <: Cat # Panther is also a subtype of Cat
|
||||
eye_color
|
||||
eyeColor
|
||||
Panther() = new("green")
|
||||
# Panthers will only have this constructor, and no default constructor.
|
||||
end
|
||||
@ -669,14 +669,14 @@ Lion <: Cat # => true
|
||||
Panther <: Cat # => true
|
||||
|
||||
# Defining a function that takes Cats
|
||||
function pet_cat(cat::Cat)
|
||||
function petCat(cat::Cat)
|
||||
println("The cat says $(meow(cat))")
|
||||
end
|
||||
# => pet_cat (generic function with 1 method)
|
||||
# => petCat (generic function with 1 method)
|
||||
|
||||
pet_cat(Lion("42")) # => The cat says 42
|
||||
petCat(Lion("42")) # => The cat says 42
|
||||
try
|
||||
pet_cat(tigger) # => ERROR: MethodError: no method matching pet_cat(::Tiger)
|
||||
petCat(tigger) # => ERROR: MethodError: no method matching petCat(::Tiger)
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
@ -695,7 +695,7 @@ fight(tigger, Panther()) # => The orange tiger wins!
|
||||
fight(tigger, Lion("ROAR")) # => The orange tiger wins!
|
||||
|
||||
# Let's change the behavior when the Cat is specifically a Lion
|
||||
fight(t::Tiger, l::Lion) = println("The $(l.mane_color)-maned lion wins!")
|
||||
fight(t::Tiger, l::Lion) = println("The $(l.maneColor)-maned lion wins!")
|
||||
# => fight (generic function with 2 methods)
|
||||
|
||||
fight(tigger, Panther()) # => The orange tiger wins!
|
||||
@ -744,14 +744,14 @@ fight(Lion("RAR"), Lion("brown", "rarrr")) # => The lions come to a tie
|
||||
# Under the hood
|
||||
# You can take a look at the llvm and the assembly code generated.
|
||||
|
||||
square_area(l) = l * l # square_area (generic function with 1 method)
|
||||
squareArea(l) = l * l # squareArea (generic function with 1 method)
|
||||
|
||||
square_area(5) # => 25
|
||||
squareArea(5) # => 25
|
||||
|
||||
# What happens when we feed square_area an integer?
|
||||
code_native(square_area, (Int32,), syntax = :intel)
|
||||
# What happens when we feed squareArea an integer?
|
||||
codeNative(squareArea, (Int32,), syntax = :intel)
|
||||
# .text
|
||||
# ; Function square_area {
|
||||
# ; Function squareArea {
|
||||
# ; Location: REPL[116]:1 # Prologue
|
||||
# push rbp
|
||||
# mov rbp, rsp
|
||||
@ -765,9 +765,9 @@ code_native(square_area, (Int32,), syntax = :intel)
|
||||
# nop dword ptr [rax + rax]
|
||||
# ;}
|
||||
|
||||
code_native(square_area, (Float32,), syntax = :intel)
|
||||
codeNative(squareArea, (Float32,), syntax = :intel)
|
||||
# .text
|
||||
# ; Function square_area {
|
||||
# ; Function squareArea {
|
||||
# ; Location: REPL[116]:1
|
||||
# push rbp
|
||||
# mov rbp, rsp
|
||||
@ -780,9 +780,9 @@ code_native(square_area, (Float32,), syntax = :intel)
|
||||
# nop word ptr [rax + rax]
|
||||
# ;}
|
||||
|
||||
code_native(square_area, (Float64,), syntax = :intel)
|
||||
codeNative(squareArea, (Float64,), syntax = :intel)
|
||||
# .text
|
||||
# ; Function square_area {
|
||||
# ; Function squareArea {
|
||||
# ; Location: REPL[116]:1
|
||||
# push rbp
|
||||
# mov rbp, rsp
|
||||
@ -798,12 +798,12 @@ code_native(square_area, (Float64,), syntax = :intel)
|
||||
# Note that julia will use floating point instructions if any of the
|
||||
# arguments are floats.
|
||||
# Let's calculate the area of a circle
|
||||
circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
|
||||
circle_area(5) # 78.53981633974483
|
||||
circleArea(r) = pi * r * r # circleArea (generic function with 1 method)
|
||||
circleArea(5) # 78.53981633974483
|
||||
|
||||
code_native(circle_area, (Int32,), syntax = :intel)
|
||||
codeNative(circleArea, (Int32,), syntax = :intel)
|
||||
# .text
|
||||
# ; Function circle_area {
|
||||
# ; Function circleArea {
|
||||
# ; Location: REPL[121]:1
|
||||
# push rbp
|
||||
# mov rbp, rsp
|
||||
@ -832,9 +832,9 @@ code_native(circle_area, (Int32,), syntax = :intel)
|
||||
# nop dword ptr [rax]
|
||||
# ;}
|
||||
|
||||
code_native(circle_area, (Float64,), syntax = :intel)
|
||||
codeNative(circleArea, (Float64,), syntax = :intel)
|
||||
# .text
|
||||
# ; Function circle_area {
|
||||
# ; Function circleArea {
|
||||
# ; Location: REPL[121]:1
|
||||
# push rbp
|
||||
# mov rbp, rsp
|
||||
|
Loading…
x
Reference in New Issue
Block a user