1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-01-17 21:49:22 +01:00

Merge pull request #1935 from xou/haskell-de-sync

[haskell/de] Synchronized with english version
This commit is contained in:
Adam Bard 2015-10-31 18:25:14 +08:00
commit ffc7728679

View File

@ -5,6 +5,7 @@ contributors:
- ["Adit Bhargava", "http://adit.io"]
translators:
- ["Henrik Jürges", "https://github.com/santifa"]
- ["Nikolai Weh", "http://weh.hamburg"]
filename: haskell-de.hs
---
@ -64,6 +65,7 @@ not False -- True
"Hello " ++ "world!" -- "Hello world!"
-- Ein String ist eine Liste von Zeichen.
['H', 'a', 'l', 'l', 'o', '!'] -- "Hallo!"
"Das ist eine String" !! 0 -- 'D'
@ -76,6 +78,18 @@ not False -- True
[1, 2, 3, 4, 5]
[1..5]
-- Die zweite Variante nennt sich die "range"-Syntax.
-- Ranges sind recht flexibel:
['A'..'F'] -- "ABCDEF"
-- Es ist möglich eine Schrittweite anzugeben:
[0,2..10] -- [0,2,4,6,8,10]
[5..1] -- [], da Haskell standardmässig inkrementiert.
[5,4..1] -- [5,4,3,2,1]
-- Der "!!"-Operator extrahiert das Element an einem bestimmten Index:
[1..10] !! 3 -- 4
-- Haskell unterstuetzt unendliche Listen!
[1..] -- Die Liste aller natuerlichen Zahlen
@ -95,9 +109,6 @@ not False -- True
-- Ein Element als Head hinzufuegen
0:[1..5] -- [0, 1, 2, 3, 4, 5]
-- Gibt den 5. Index zurueck
[0..] !! 5 -- 5
-- Weitere Listenoperationen
head [1..5] -- 1
tail [1..5] -- [2, 3, 4, 5]
@ -114,7 +125,8 @@ last [1..5] -- 5
-- Ein Tupel:
("haskell", 1)
-- Auf Elemente eines Tupels zugreifen:
-- Ein Paar (Pair) ist ein Tupel mit 2 Elementen, auf die man wie folgt
-- zugreifen kann:
fst ("haskell", 1) -- "haskell"
snd ("haskell", 1) -- 1
@ -142,7 +154,7 @@ add 1 2 -- 3
-- Guards sind eine einfache Möglichkeit fuer Fallunterscheidungen.
fib x
| x < 2 = x
| x < 2 = 1
| otherwise = fib (x - 1) + fib (x - 2)
-- Pattern Matching funktioniert ähnlich.
@ -190,23 +202,28 @@ foo 5 -- 15
-- Funktionskomposition
-- Die (.) Funktion verkettet Funktionen.
-- Zum Beispiel, die Funktion Foo nimmt ein Argument addiert 10 dazu und
-- multipliziert dieses Ergebnis mit 5.
foo = (*5) . (+10)
-- multipliziert dieses Ergebnis mit 4.
foo = (*4) . (+10)
-- (5 + 10) * 5 = 75
foo 5 -- 75
-- (5 + 10) * 4 = 60
foo 5 -- 60
-- Haskell hat eine Funktion `$`. Diese ändert den Vorrang,
-- so dass alles links von ihr zuerst berechnet wird und
-- und dann an die rechte Seite weitergegeben wird.
-- Mit `.` und `$` kann man sich viele Klammern ersparen.
-- Haskell hat einen Operator `$`, welcher Funktionsapplikation durchfuehrt.
-- Im Gegenzug zu der Standard-Funktionsapplikation, welche linksassoziativ ist
-- und die höchstmögliche Priorität von "10" hat, ist der `$`-Operator
-- rechtsassoziativ und hat die Priorität 0. Dieses hat (idr.) den Effekt,
-- dass der `komplette` Ausdruck auf der rechten Seite als Parameter für die
-- Funktion auf der linken Seite verwendet wird.
-- Mit `.` und `$` kann man sich so viele Klammern ersparen.
-- Vorher
(even (fib 7)) -- true
(even (fib 7)) -- false
-- Danach
even . fib $ 7 -- true
-- Äquivalent:
even $ fib 7 -- false
-- Funktionskomposition:
even . fib $ 7 -- false
----------------------------------------------------
-- 5. Typensystem
@ -233,19 +250,19 @@ double :: Integer -> Integer
double x = x * 2
----------------------------------------------------
-- 6. If-Anweisung und Kontrollstrukturen
-- 6. If-Ausdrücke und Kontrollstrukturen
----------------------------------------------------
-- If-Anweisung:
-- If-Ausdruck:
haskell = if 1 == 1 then "awesome" else "awful" -- haskell = "awesome"
-- If-Anweisungen können auch ueber mehrere Zeilen verteilt sein.
-- Das Einruecken ist dabei äußerst wichtig.
-- If-Ausdrücke können auch über mehrere Zeilen verteilt sein.
-- Die Einrückung ist dabei wichtig.
haskell = if 1 == 1
then "awesome"
else "awful"
-- Case-Anweisung: Zum Beispiel "commandline" Argumente parsen.
-- Case-Ausdruck: Am Beispiel vom Parsen von "commandline"-Argumenten.
case args of
"help" -> printHelp
"start" -> startProgram
@ -276,7 +293,7 @@ foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43
foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16
-- die Abarbeitung sieht so aus:
(2 * 3 + (2 * 2 + (2 * 1 + 4)))
(2 * 1 + (2 * 2 + (2 * 3 + 4)))
----------------------------------------------------
-- 7. Datentypen