mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-17 21:49:22 +01:00
8.4 KiB
8.4 KiB
name | category | language | filename | contributors | |||
---|---|---|---|---|---|---|---|
perl6 | language | perl6 | learnperl6.pl |
|
Perl 6 is a highly capable, feature-rich programming language made for the upcoming hundred years.
Perl 6 runs on the Parrot VM, the JVM and the MoarVM.
# Single line comment start with a pound
#`(
Multiline comments use #` and a quoting construct. (), [], {}, 「」, etc, will work.
)
### Variables
# In Perl 6, you declare a lexical variable using `my`
# Perl 6 has 4 variable types :
## - Scalars. They represent a single value. They start with a `$`
my $str = 'String';
my $str2 = "String"; # double quotes allow for interpolation
# variable names can contain but not end with simple quotes and dashes, and can contain (and end with) underscores
my $weird'variable-name_ = 5;
## - Arrays. They represent multiple values. They start with `@`
my @array = 1, 2, 3;
my @array = 'a', 'b', 'c';
# equivalent to :
my @array = <a b c>; # array of string, delimited by space. similar to perl5's qw, or Ruby's %w
say @array[2]; # Arrays are 0-indexed
## - Hashes
my %hash = 1 => 2,
3 => 4;
my %hash = autoquoted => "key",
"some other" => "value", # trailing commas are okay
;
my %hash = <key1 value1 key2 value2> # you can also create a hash from an even-numbered array
say %hash{'key1'}; # You can use {} to get the value from a key
say %hash<key2>; # if it's a string, you can actually use <>
## - Subs (subroutines, or functions in most other languages). Stored in variable, they use `&`
sub say-hello { say "Hello, world" }
sub say-hello-to(Str $name) { # you can provide the type of an argument
# and it'll be checked at compile-time
say "Hello, $name !";
}
# since you can omit parenthesis to call a function with no arguments, you need to use `&` also to capture `say-hello`
my &s = &say-hello;
my &other-s = sub { say "anonymous function !" }
# `->`, lambda with arguments, and string interpolation
my &lambda = -> $argument { "The argument passed to this lambda is $argument" }
### Containers
# In Perl 6, values are actually stored in "containers".
# the assignment operator asks the container on the left to store the value on its right
# When passed around, containers are marked as immutable. Which means that, in a function,
# you'll get an error if you try to mutate one of your argument.
# If you really need to, you can ask for a mutable container using `is rw` :
sub mutate($n is rw) {
$n++;
say "\$n is now $n !";
}
# If what you want is a copy instead, use `is copy`.
# A sub itself returns a container, which means it can be marked as rw :
my $x = 42;
sub mod() is rw { $x }
mod() = 52; # in this case, the parentheses are mandatory
say $x; #=> 52
### Control Flow Structures
# You don't need to put parenthesis around the condition, but that also means you always have to use brackets (`{ }`) for their body :
## Conditionals
if True {
say "It's true !";
}
unless False {
say "It's not false !";
}
# if (true) say; # Won't work
# `given`-`when` looks like other languages `switch`, but it's much more powerful thanks to smart matching :
given "foo bar" { # given just puts its argument into `$_`, and `when` uses it using the "smart matching" operator.
when /foo/ { # you'll read about the smart-matching operator below
say "Yay !";
}
when $_.chars > 50 { # smart matching anything with True gives True, so you can also put "normal" conditionals
say "Quite a long string !";
}
}
## Looping constructs
### - `loop` is an infinite loop if you don't pass it arguments, but can also be a c-style `for` :
loop {
say "This is an infinite loop !";
last; # last breaks out of the loop, like the `break` keyword in other languages
}
loop (my $i = 0; $i < 5; $i++) {
next if $i == 3; # `next` skips to the next iteration, like `continue` in other languages.
# Notice that you can also use postfix conditionals, loops, etc.
say "This is a C-style for loop !";
}
### - `for` - Foreaches an array
for @array -> $variable {
say "I've found $variable !";
}
# default variable is $_
for array {
say "I've got $_";
}
# Note - the "lambda" `->` syntax isn't reserved to for :
if long-computation() -> $result {
say "The result is $result";
}
# Operators
## Since Perl languages are very much operator-based languages
## Perl 6 operators are actually just funny-looking subroutines, in syntactic categories,
## like infix:<+> (addition) or prefix:<!> (bool not)
## The categories are :
### - "prefix" : before (like `!` in `!True`).
### - "postfix" : after (like `++` in `$a++`).
### - "infix" : in between (like `*` in `4 * 3`).
### - "circumfix" : around (like `[`-`]` in `[1, 2]`).
### - "post-circumfix" : around, after another term (like `{`-`}` in `%hash{'key'}`)
## The associativity and precedence list are explained below.
## Alright, you're set to go !
## * Equality Checking
### - `==` is numeric comparison
3 == 4; # False
3 != 4; # True
### - `eq` is string comparison
'a' eq 'b';
'a' ne 'b'; # not equal
'a' !eq 'b'; # same as above
### - `eqv` is canonical equivalence
(1, 2) eqv (1, 3);
### - `~~` is smart matching
### for a complete combinations list, use this table : http://perlcabal.org/syn/S03.html#Smart_matching
'a' ~~ /a/; # true if matches regexp
'key' ~~ %hash; # true if key exists in hash
$arg ~~ &bool-returning-function; # true if the function, passed `$arg` as an argument, returns True
1 ~~ Int; # "is of type"
### - `===` is value identity and uses `.WHICH` on the objects to compare them
### - `=:=` is container identity and uses `VAR()` on the objects to compare them
### You also, of course, have `<`, `<=`, `>`, `>=`.
### Their string equivalent are also avaiable : `lt`, `le`, `gt`, `ge`.
3 > 4;
## * Range constructors
3 .. 7; # 3 to 7, both included
### `^` on either side them exclusive on that side :
3 ^..^ 7; # 3 to 7, not included (basically `4 .. 6`)
# * And, Or
3 && 4; # True. Calls `.Bool` on `3`
0 || False; # False. Calls `.Bool` on `0`
## Short-circuit (and tight)
$a && $b && $c; # returns the first argument that evaluates to False, or the last argument
$a || $b;
# Perl 6 has a quite comprehensive class system
## You declare a class with the keyword `class`, fields with `has`, methods with `method`
## `$.` declares a public field, `$!` declares a private field
## (a public field also has `$!`, which is its private interface)
class A {
has $.field;
has Int $!private-field = 10;
method get-value {
$.field + $!private-field + $n;
}
method set-value($n) {
# $.field = $n; # This fails, because a public field is actually an immutable container
# (even from inside the class)
# You either need to use `is rw` on the `has`
# (which will make it mutable, even from outside the class)
# or you need to use the `$!` version :
$!field = $n; # This works, because `$!` is always mutable
}
};
# Create a new instance of A with $.field set to 5 :
# note : you can't set private-field from here (more later on)
my $a = A.new(field => 5);
$a.get-value; #=> 18
#$a.field = 5; # This fails, because the `has $.field` is lacking the `is rw`
# More operators thingies !
## Everybody loves operators ! Let's get more of them
## The precedence list can be found here : http://perlcabal.org/syn/S03.html#Operator_precedence
## But first, we need a little explanation about associativity :
### Binary operators:
$a ! $b ! $c; # with a left-associative `!`, this is `($a ! $b) ! $c`
$a ! $b ! $c; # with a right-associative `!`, this is `$a ! ($b ! $c)`
$a ! $b ! $c; # with a non-associative `!`, this is illegal
$a ! $b ! $c; # with a chain-associative `!`, this is `($a ! $b) and ($b ! $c)`
$a ! $b ! $c; # with a list-associative `!`, this is `infix:<>`
### Unary operators:
!$a! # with left-associative `!`, this is `(!$a)!`
!$a! # with right-associative `!`, this is `!($a!)`
!$a! # with non-associative `!`, this is illegal
## And to end the list of operators ...
## * Sort comparison
### They return one value of the `Order` enum : `Less`, `Same` and `More` (which numerify to -1, 0 or +1).
1 <=> 4; # sort comparison for numerics
'a' leg 'b'; # sort comparison for string
$obj eqv $obj2; # sort comparison using eqv semantics
## * Generic ordering
3 before 4; # True
'b' after 'a'; # True