1
0
mirror of https://github.com/adambard/learnxinyminutes-docs.git synced 2025-01-17 13:38:38 +01:00
learnxinyminutes-docs/rust.html.markdown
P1start ecc5d89841 [rust/en] Update the Rust tutorial
This adjusts the English Rust tutorial for changes to the language and
generally tweaks a few other things.

Fixes #860.
2015-01-15 15:14:25 +13:00

8.3 KiB
Raw Blame History

language contributors filename
rust
P1start
http://p1start.github.io/
learnrust.rs

Rust is an in-development programming language developed by Mozilla Research. It is relatively unique among systems languages in that it can assert memory safety at compile time without resorting to garbage collection. Rusts first release, 0.1, occurred in January 2012, and development moves so quickly that at the moment the use of stable releases is discouraged, and instead one should use nightly builds. On January 9 2015, Rust 1.0 Alpha was released, and the rate of changes to the Rust compiler that break existing code has dropped significantly since. However, a complete guarantee of backward compatibility will not exist until the final 1.0 release.

Although Rust is a relatively low-level language, Rust has some functional concepts that are generally found in higher-level languages. This makes Rust not only fast, but also easy and efficient to code in.

// This is a comment. Single-line look like this...
/* ...and multi-line comment look like this */

///////////////
// 1. Basics //
///////////////

// Functions
// `i32` is the type for 32-bit signed integers
fn add2(x: i32, y: i32) -> i32 {
    // Implicit return (no semicolon)
    x + y
}

// Main function
fn main() {
    // Numbers //

    // Immutable bindings
    let x: i32 = 1;

    // Integer/float suffixes
    let y: i32 = 13i32;
    let f: f64 = 1.3f64;

    // Type inference
    // Most of the time, the Rust compiler can infer what type a variable is, so
    // you dont have to write an explicit type annotation.
    // Throughout this tutorial, types are explicitly annotated in many places,
    // but only for demonstrative purposes. Type inference can handle this for
    // you most of the time.
    let implicit_x = 1;
    let implicit_f = 1.3;

    // Arithmetic
    let sum = x + y + 13;

    // Mutable variable
    let mut mutable = 1;
    mutable = 4;
    mutable += 2;

    // Strings //

    // String literals
    let x: &str = "hello world!";

    // Printing
    println!("{} {}", f, x); // 1.3 hello world

    // A `String`  a heap-allocated string
    let s: String = "hello world".to_string();

    // A string slice  an immutable view into another string
    // This is basically an immutable pointer to a string  it doesnt
    // actually contain the contents of a string, just a pointer to
    // something that does (in this case, `s`)
    let s_slice: &str = &*s;

    println!("{} {}", s, s_slice); // hello world hello world

    // Vectors/arrays //

    // A fixed-size array
    let four_ints: [i32; 4] = [1, 2, 3, 4];

    // A dynamic array (vector)
    let mut vector: Vec<i32> = vec![1, 2, 3, 4];
    vector.push(5);

    // A slice  an immutable view into a vector or array
    // This is much like a string slice, but for vectors
    let slice: &[i32] = &*vector;

    // Use `{:?}` to print something debug-style
    println!("{:?} {:?}", vector, slice); // [1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

    // Tuples //

    // A tuple is a fixed-size set of values of possibly different types
    let x: (i32, &str, f64) = (1, "hello", 3.4);

    // Destructuring `let`
    let (a, b, c) = x;
    println!("{} {} {}", a, b, c); // 1 hello 3.4

    // Indexing
    println!("{}", x.1); // hello

    //////////////
    // 2. Types //
    //////////////

    // Struct
    struct Point {
        x: i32,
        y: i32,
    }

    let origin: Point = Point { x: 0, y: 0 };

    // A struct with unnamed fields, called a tuple struct
    struct Point2(i32, i32);

    let origin2 = Point2(0, 0);

    // Basic C-like enum
    enum Direction {
        Left,
        Right,
        Up,
        Down,
    }

    let up = Direction::Up;

    // Enum with fields
    enum OptionalI32 {
        AnI32(i32),
        Nothing,
    }

    let two: OptionalI32 = OptionalI32::AnI32(2);
    let nothing = OptionalI32::Nothing;

    // Generics //

    struct Foo<T> { bar: T }

    // This is defined in the standard library as `Option`
    enum Optional<T> {
        SomeVal(T),
        NoVal,
    }

    // Methods //

    impl<T> Foo<T> {
        // Methods take an explicit `self` parameter
        fn get_bar(self) -> T {
            self.bar
        }
    }

    let a_foo = Foo { bar: 1 };
    println!("{}", a_foo.get_bar()); // 1

    // Traits (known as interfaces or typeclasses in other languages) //

    trait Frobnicate<T> {
        fn frobnicate(self) -> Option<T>;
    }

    impl<T> Frobnicate<T> for Foo<T> {
        fn frobnicate(self) -> Option<T> {
            Some(self.bar)
        }
    }

    let another_foo = Foo { bar: 1 };
    println!("{:?}", another_foo.frobnicate()); // Some(1)

    /////////////////////////
    // 3. Pattern matching //
    /////////////////////////

    let foo = OptionalI32::AnI32(1);
    match foo {
        OptionalI32::AnI32(n) => println!("its an i32: {}", n),
        OptionalI32::Nothing  => println!("its nothing!"),
    }

    // Advanced pattern matching
    struct FooBar { x: i32, y: OptionalI32 }
    let bar = FooBar { x: 15, y: OptionalI32::AnI32(32) };

    match bar {
        FooBar { x: 0, y: OptionalI32::AnI32(0) } =>
            println!("The numbers are zero!"),
        FooBar { x: n, y: OptionalI32::AnI32(m) } if n == m =>
            println!("The numbers are the same"),
        FooBar { x: n, y: OptionalI32::AnI32(m) } =>
            println!("Different numbers: {} {}", n, m),
        FooBar { x: _, y: OptionalI32::Nothing } =>
            println!("The second number is Nothing!"),
    }

    /////////////////////
    // 4. Control flow //
    /////////////////////

    // `for` loops/iteration
    let array = [1, 2, 3];
    for i in array.iter() {
        println!("{}", i);
    }

    // Ranges
    for i in 0u32..10 {
        print!("{} ", i);
    }
    println!("");
    // prints `0 1 2 3 4 5 6 7 8 9 `

    // `if`
    if 1 == 1 {
        println!("Maths is working!");
    } else {
        println!("Oh no...");
    }

    // `if` as expression
    let value = if true {
        "good"
    } else {
        "bad"
    };

    // `while` loop
    while 1 == 1 {
        println!("The universe is operating normally.");
    }

    // Infinite loop
    loop {
        println!("Hello!");
    }

    /////////////////////////////////
    // 5. Memory safety & pointers //
    /////////////////////////////////

    // Owned pointer  only one thing can own this pointer at a time
    // This means that when the `Box` leaves its scope, it can be automatically deallocated safely.
    let mut mine: Box<i32> = Box::new(3);
    *mine = 5; // dereference
    // Here, `now_its_mine` takes ownership of `mine`. In other words, `mine` is moved.
    let mut now_its_mine = mine;
    *now_its_mine += 2;

    println!("{}", now_its_mine); // 7
    // println!("{}", mine); // this would not compile because `now_its_mine` now owns the pointer

    // Reference  an immutable pointer that refers to other data
    // When a reference is taken to a value, we say that the value has been borrowed.
    // While a value is borrowed immutably, it cannot be mutated or moved.
    // A borrow lasts until the end of the scope it was created in.
    let mut var = 4;
    var = 3;
    let ref_var: &i32 = &var;

    println!("{}", var); // Unlike `box`, `var` can still be used
    println!("{}", *ref_var);
    // var = 5; // this would not compile because `var` is borrowed
    // *ref_var = 6; // this would too, because `ref_var` is an immutable reference

    // Mutable reference
    // While a value is mutably borrowed, it cannot be accessed at all.
    let mut var2 = 4;
    let ref_var2: &mut i32 = &mut var2;
    *ref_var2 += 2;

    println!("{}", *ref_var2); // 6
    // var2 = 2; // this would not compile because `var2` is borrowed
}

Further reading

Theres a lot more to Rust—this is just the basics of Rust so you can understand the most important things. To learn more about Rust, read The Rust Programming Language and check out the /r/rust subreddit. The folks on the #rust channel on irc.mozilla.org are also always keen to help newcomers.

You can also try out features of Rust with an online compiler at the official Rust playpen or on the main Rust website.