mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-17 13:38:38 +01:00
311 lines
6.9 KiB
Markdown
311 lines
6.9 KiB
Markdown
---
|
|
language: elixir
|
|
author: Joao Marques
|
|
author_url: http://github.com/mrshankly
|
|
filename: learnelixir.ex
|
|
---
|
|
|
|
```elixir
|
|
# Single line comments start with a hash.
|
|
|
|
## --------------------
|
|
## -- Basic types
|
|
## --------------------
|
|
|
|
# There are numbers
|
|
3 # integer
|
|
0x1F # integer
|
|
3.0 # float
|
|
|
|
# Atoms, that are literals, a constant with name. They start with `:`.
|
|
:hello # atom
|
|
|
|
# Tuples that are stored contigously in memory.
|
|
{1,2,3} # tuple
|
|
|
|
# We can access a tuple element with the `elem` function:
|
|
elem({1, 2, 3}, 0) # => 1
|
|
|
|
# Lists that are implemented as linked lists.
|
|
[1,2,3] # list
|
|
|
|
# We can access the head and tail of a list as follows:
|
|
[head | tail] = [1,2,3]
|
|
head # => 1
|
|
tail # => [2,3]
|
|
|
|
# In elixir, just like in erlang, the `=` denotes pattern matching and
|
|
# not an assignment.
|
|
#
|
|
# This means that the left-hand side (pattern) is matched against a
|
|
# right-hand side.
|
|
#
|
|
# This is how the above example of accessing the head and tail of a list works.
|
|
|
|
# A pattern match will error when the sides don't match, in this example
|
|
# the tuples have different sizes.
|
|
{a, b, c} = {1, 2} # => ** (MatchError) no match of right hand side value: {1,2}
|
|
|
|
# There's also binaries
|
|
<<1,2,3>> # binary
|
|
|
|
# Strings and char lists
|
|
"hello" # string
|
|
'hello' # char list
|
|
|
|
# Strings are all encoded in UTF-8:
|
|
"héllò" # => "héllò"
|
|
|
|
# Strings are really just binaries, and char lists are just lists.
|
|
<<?a, ?b, ?c>> # => "abc"
|
|
[?a, ?b, ?c] # => 'abc'
|
|
|
|
# `?a` in elixir returns the ASCII integer for the letter `a`
|
|
?a # => 97
|
|
|
|
## TODO:
|
|
######################################################
|
|
## JOIN BINARIES AND LISTS
|
|
######################################################
|
|
|
|
## ---------------------------
|
|
## -- Operators
|
|
## ---------------------------
|
|
|
|
# Some math
|
|
1 + 1 # => 2
|
|
10 - 5 # => 5
|
|
5 * 2 # => 10
|
|
10 / 2 # => 5.0
|
|
|
|
# In elixir the operator `/` always returns a float.
|
|
|
|
# To do integer division use `div`
|
|
div(10, 2) # => 5
|
|
|
|
# To get the division remainder use `rem`
|
|
rem(10, 3) # => 1
|
|
|
|
# There's also boolean operators: `or`, `and` and `not`.
|
|
# These operators expect a boolean as their first argument.
|
|
true and true # => true
|
|
false or true # => true
|
|
1 and true # => ** (ArgumentError) argument error
|
|
|
|
# Elixir also provides `||`, `&&` and `!` which accept arguments of any type.
|
|
# All values except `false` and `nil` will evaluate to true.
|
|
1 || true # => 1
|
|
false && 1 # => false
|
|
nil && 20 # => nil
|
|
|
|
!true # => false
|
|
|
|
# For comparisons we have: `==`, `!=`, `===`, `!==`, `<=`, `>=`, `<` and `>`
|
|
1 == 1 # => true
|
|
1 != 1 # => false
|
|
1 < 2 # => true
|
|
|
|
# `===` and `!==` are more strict when comparing integers and floats:
|
|
1 == 1.0 # => true
|
|
1 === 1.0 # => false
|
|
|
|
# We can also compare two different data types:
|
|
1 < :hello # => true
|
|
|
|
# The overall sorting order is defined below:
|
|
number < atom < reference < functions < port < pid < tuple < list < bit string
|
|
|
|
# To quote Joe Armstrong on this: "The actual order is not important,
|
|
# but that a total ordering is well defined is important."
|
|
|
|
## ---------------------------
|
|
## -- Control Flow
|
|
## ---------------------------
|
|
|
|
# `if` expression
|
|
if false do
|
|
"This will never be seen"
|
|
else
|
|
"This will"
|
|
end
|
|
|
|
# There's also `unless`
|
|
unless true do
|
|
"This will never be seen"
|
|
else
|
|
"This will"
|
|
end
|
|
|
|
# Remember pattern matching? Many control-flow structures in elixir rely on it.
|
|
|
|
# `case` allows us to compare a value against many patterns:
|
|
case {:one, :two} do
|
|
{:four, :five} ->
|
|
"This won't match"
|
|
{:one, x} ->
|
|
"This will match and assign `x` to `:two`"
|
|
_ ->
|
|
"This will match any value"
|
|
end
|
|
|
|
# It's common practive to assign a value to `_` if we don't need it.
|
|
# For example, if only the head of a list matters to us:
|
|
[head | _] = [1,2,3]
|
|
head # => 1
|
|
|
|
# For better readability we can do the following:
|
|
[head | _tail] = [:a, :b, :c]
|
|
head # => :a
|
|
|
|
# `cond` lets us check for many conditions at the same time.
|
|
# Use `cond` instead of nesting many `if` expressions.
|
|
cond do
|
|
1 + 1 == 3 ->
|
|
"I will never be seen"
|
|
2 * 5 == 12 ->
|
|
"Me neither"
|
|
1 + 2 == 3 ->
|
|
"But I will"
|
|
end
|
|
|
|
# It is common to see a last condition equal to `true`, which will always match.
|
|
cond do
|
|
1 + 1 == 3 ->
|
|
"I will never be seen"
|
|
2 * 5 == 12 ->
|
|
"Me neither"
|
|
true ->
|
|
"But I will (this is essentially an else)"
|
|
end
|
|
|
|
# `try/catch` is used to catch values that are thrown, it also supports an
|
|
# `after` clause that is invoked whether or not a value is catched.
|
|
try do
|
|
throw(:hello)
|
|
catch
|
|
message -> "Got #{message}."
|
|
after
|
|
IO.puts("I'm the after clause.")
|
|
end
|
|
# => I'm the after clause
|
|
# "Got :hello"
|
|
|
|
## TODO:
|
|
######################################################
|
|
## GUARDS
|
|
######################################################
|
|
|
|
## ---------------------------
|
|
## -- Modules and Functions
|
|
## ---------------------------
|
|
|
|
###############################
|
|
## EXPLAIN built-in functions?
|
|
###############################
|
|
|
|
# Anonymous functions (notice the dot)
|
|
square = fn(x) -> x * x end
|
|
square.(5) #=> 25
|
|
|
|
# They also accept many clauses and guards
|
|
f = fn
|
|
x, y when x > 0 -> x + y
|
|
x, y -> x * y
|
|
end
|
|
|
|
f.(1, 3) #=> 4
|
|
f.(-1, 3) #=> -3
|
|
|
|
# You can group several functions into a module. Inside a module use `def`
|
|
# to define your functions.
|
|
defmodule Math do
|
|
def sum(a, b) do
|
|
a + b
|
|
end
|
|
|
|
def square(x) do
|
|
x * x
|
|
end
|
|
end
|
|
|
|
Math.sum(1, 2) #=> 3
|
|
Match.square(3) #=> 9
|
|
|
|
# To compile our little Math module save it as `math.ex` and use `elixirc`
|
|
elixirc math.ex
|
|
|
|
# Inside a module we can define functions with `def` and
|
|
# private functions with `defp`.
|
|
#
|
|
# A function defined with `def` is available to be invoked from other modules,
|
|
# a private function can only be invoked locally.
|
|
defmodule PrivateMath do
|
|
def sum(a, b) do
|
|
do_sum(a, b)
|
|
end
|
|
|
|
defp do_sum(a, b) do
|
|
a + b
|
|
end
|
|
end
|
|
|
|
PrivateMath.sum(1, 2) #=> 3
|
|
PrivateMath.do_sum(1, 2) #=> ** (UndefinedFunctionError)
|
|
|
|
# Function declarations also support guards and multiple clauses:
|
|
defmodule Geometry do
|
|
def area({:rectangle, w, h}) do
|
|
w * h
|
|
end
|
|
|
|
def area({:circle, r}) when r > 0 do
|
|
3.14 * r * r
|
|
end
|
|
end
|
|
|
|
Geometry.area({:rectangle, 2, 3}) #=> 6
|
|
Geometry.area({:circle, 3}) #=> 28.25999999999999801048
|
|
|
|
# Due to immutability, recursion is a big part of elixir
|
|
defmodule Recursion do
|
|
def sum_list([head | tail], acc) do
|
|
sum_list(tail, acc + head)
|
|
end
|
|
|
|
def sum_list([], acc) do
|
|
acc
|
|
end
|
|
end
|
|
|
|
Recursion.sum_list([1,2,3], 0) #=> 6
|
|
|
|
###############################
|
|
## EXPLAIN module attributes
|
|
###############################
|
|
|
|
## ---------------------------
|
|
## -- Records and Exceptions
|
|
## ---------------------------
|
|
|
|
# Records are basically structures that allow you to associate a name with
|
|
# a particular value.
|
|
defrecord Person, name: nil, age: 0, height: 0
|
|
|
|
joe_info = Person.new(name: "Joe", age: 30, height: 180)
|
|
#=> Person[name: "Joe", age: 30, height: 180]
|
|
|
|
# Access the value of name
|
|
joe_info.name #=> "Joe"
|
|
|
|
# Update the value of age
|
|
joe_info = joe_info.age(31) #=> Person[name: "Joe", age: 31, height: 180]
|
|
|
|
## TODO: Exceptions
|
|
|
|
## ---------------------------
|
|
## -- Concurrency
|
|
## ---------------------------
|
|
|
|
## TODO
|
|
```
|