1
0
mirror of https://github.com/bdring/Grbl_Esp32.git synced 2025-08-29 17:19:50 +02:00

Translator WIP

Not tested at all, probably won't compile, but the basic
structure is present.  PR so people can inspect it.
This commit is contained in:
Mitch Bradley
2021-07-08 00:02:47 -10:00
parent 1f2436030d
commit aafa9da283

View File

@@ -0,0 +1,435 @@
#define p(...) \
do { \
grbl_sendf(CLIENT_SERIAL, __VA_ARGS__); \
grbl_sendf(CLIENT_SERIAL, "\n"); \
} while (0);
const char* tf(bool v) { return v ? "true" : "false" };
void print_steps(int axis) {
p(" steps_per_mm: %f", axis_settings[axis]->steps_per_mm->get());
p(" max_rate: %f", axis_settings[axis]->max_rate->get());
p(" acceleration: %f", axis_settings[axis]->acceleration->get());
p(" max_travel: %f", axis_settings[axis]->max_travel->get());
p(" soft_limits: %s", tf(soft_limits->get()));
}
void print_homing(int axis) {
for (int cycle; cycle < MAX_N_AXIS; cycle++) {
if (bitnum_istrue(homing_cycle[cycle], axis)) {
break;
}
}
if (cycle == MAX_N_AXIS) {
// XXX alternative: set cycle to 0
return;
}
p(" homing:") p(" cycle", cycle);
p(" positive_direction: %s", tf(bitnum_istrue(homing_dir_mask->get(), axis)));
p(" mpos: %f", axis_settings[axis]->home_mpos->get());
p(" debounce: %f", homing_debounce->get());
p(" pulloff: %f", homing_pulloff->get());
p(" square: %s", tf(bitnum_istrue(homing_squared_axes->get, axis));
p(" seek_rate: %f", homing_seek_rate->get());
p(" feed_rate: %f", homing_feed_rate->get());
p(" seek_scaler: %f", HOMING_AXIS_SEARCH_SCALAR);
p(" feed_scaler: %f", HOMING_AXIS_LOCATE_SCALAR);
}
void print_endstops(int axis, int gang) {
if (limit_pins[axis][gang] != UNDEFINED_PIN) {
p(" endstops:");
p(" dual: %s", print_pin(limit_pins[axis][gang], limit_invert->get(), DISABLE_LIMIT_PIN_PULL_UP));
p(" hard_limits: %s", tf(DEFAULT_HARD_LIMIT_ENABLE));
}
}
void print_motor(Motor* m, int axis, int gang) {
p(" %s:", m->name());
}
void print_servo(Motor* m, int axis, int gang) {
print_motor(m, axis, gang));
}
void print_rc_servo(Motor* m, int axis, int gang) {
print_servo(m, axis, gang);
p(" cal_min: %f", m->_cal_min);
p(" cal_max: %f", m->_cal_max);
p(" pwm: %s" print_pin(m->_pwm_pin, false))
}
void print_solenoid(Motor* m, int axis, int gang) {
print_rc_servo(m, axis, gang);
p(" transition_point: %f", 1.0f); // Placeholder
}
void print_unipolar(Motor* m, int axis, int gang) {
print_motor(m, axis, gang));
p(" phase0: %s", print_pin(m->_pin_phase0, false));
p(" phase1: %s", print_pin(m->_pin_phase1, false));
p(" phase2: %s", print_pin(m->_pin_phase2, false));
p(" phase3: %s", print_pin(m->_pin_phase3, false));
p(" half_step: %s", tf(m->_half_step)));
}
void print_dynamixel(Motor* m, int axis, int gang) {
print_servo(m, axis, gang);
p(" invert_direction: %s", tf(bitnum_istrue(dir_invert_mask->get(), axis)));
p(" count_min: %d", int(m->dxl_count_min));
p(" count_max: %d", int(m->dxl_count_max));
p(" full_time_move: %d", DYNAMIXEL_FULL_MOVE_TIME);
p(" id: %d", m->ids[axis][gang]);
p(" uart:");
print_uart(m->_uart_num, m->_tx_pin, m->_rx_pin, m->_rts_pin);
}
void print_stepstick(Motor* m, int axis, int gang) {
print_motor(m, axis, gang);
p(" direction: %s", print_pin(m->_dir_pin, m->_invert_dir_pin));
p(" step: %s", print_pin(m->_step_pin, m->_invert_step_pin));
p(" disable: %s", print_pin(m->_disable_pin, false));
}
const char* trinamicModes(TrinamicMode mode) {
switch (mode) {
case TrinamicMode::CoolStep:
return "CoolStep";
case TrinamicMode::StealthChop:
return "StealthChop";
case TrinamicMode::Stallguard:
return "Stallguard";
}
}
void print_trinamic_base(Motor* m, int axis, int gang) {
print_stepstick(m, axis, gang);
p(" r_sense: %f", m->_r_sense);
p(" run_current: %f", axis_settings[axis]->run_current->get());
p(" hold_current: %f", axis_settings[axis]->hold_current->get());
p(" microsteps: %d", axis_settings[axis]->microsteps->get());
p(" stallguard: %d", axis_settings[axis]->stallguard->get());
p(" stallguardDebugMode: %s", tf(false));
p(" run_mode: %s", _run_mode, trinamicModes(TRINAMIC_RUN_MODE));
p(" homing_mode: %s", _homing_mode, trinamicModes(TRINAMIC_HOMING_MODE));
#ifdef USE_TRINAMIC_ENABLE
p(" use_enable: %s", tf(true));
p(" toff_disable: %d", TRINAMIC_TOFF_DISABLE);
p(" toff_stealthchop: %d", TRINAMIC_TOFF_STEALTHCHOP);
p(" toff_coolstep: %d", TRINAMIC_TOFF_COOLSTEP);
#else
p(" use_enable: %s", tf(false));
#endif
}
void print_trinamic_spi(Motor* m, int axis, int gang) {
print_trinamic_base(m, axis, gang);
p(" cs: %s", print_pin(m->_cs_pin, true));
}
void print_trinamic_uart(Motor* m, int axis, int gang) {
print_trinamic_base(m, axis, gang);
p(" uart:");
print_uart(???);
}
void print_motor_class(Motor* m, int axis, int gang) {
const char* name = m->name();
if (!strcmp(name, "null_motor")) {
print_motor_name(name);
return;
}
if (!strcmp(name, "stepstick")) {
print_stepstick(m, axis, gang);
return;
}
if (!strcmp(name, "solenoid")) {
print_solenoid(name);
return;
}
if (!strcmp(name, "rc_servo")) {
print_rc_servo(name);
return;
}
if (!strcmp(name, "dynamixel2")) {
print_dynamixel(m, axis, gang);
return;
}
if (!strcmp(name, "unipolar")) {
print_unipolar(name);
return;
}
if (!strcmp(name, "tmc_2130" || !strcmp(name, "tmc_5160")) {
print_trinamic_spi(name);
return;
}
if (!strcmp(name, "tmc_2208" || !strcmp(name, "tmc_2209")) {
print_trinamic_uart(name);
return;
}
}
void print_axes() {
p("axes:");
for (int axis = 0; axis <= n_axis; axis++) {
p(" %c:", "xyzabc"[axis]);
print_steps(axis);
print_homing(axis);
for (int gang = 0; gang < 2; gang++) {
print_endstops(axis);
p(" gang%d:", gang);
print_endstops(axis, gang);
print_motor_class(myMotor[axis][gang], axis, gang);
}
}
}
void print_stepping() {
p(" engine: %s", stepper_names[current_stepper]);
p(" idle_ms: %d", stepper_idle_lock_time);
p(" pulse_us: %d", pulse_microseconds);
p(" dir_delay_us: %d", direction_delay_microseconds);
p(" disable_delay_us: %d", enable_delay_microseconds);
}
void print_i2so() {
p("i2so:");
p(" bck: %s", print_pin(_bck, );
p(" data: %s", print_pin(_data, );
p(" ws: %s", print_pin(_ws, );
}
void print_spi() {
p("spi:");
p(" cs: %s", print_pin(_cs, );
p(" miso %s", print_pin(_miso, );
p(" mosi %s", print_pin(_mosi, );
p(" sck %s", print_pin(_sck, );
}
void print_control() {
p("control:");
p(" safety_door: %s", print_pin(CONTROL_SAFETY_DOOR_PIN, bitnum_istrue(INVERT_CONTROL_PIN_MASK, 0), DISABLE_CONTROL_PIN_PULL_UP);
p(" reset: %s", print_pin(CONTROL_RESET_PIN, bitnum_istrue(INVERT_CONTROL_PIN_MASK, 1), DISABLE_CONTROL_PIN_PULL_UP);
p(" feed_hold: %s", print_pin(CONTROL_FEED_HOLD_PIN, bitnum_istrue(INVERT_CONTROL_PIN_MASK, 2), DISABLE_CONTROL_PIN_PULL_UP);
p(" cycle_start: %s", print_pin(CONTROL_CYCLE_START_PIN, bitnum_istrue(INVERT_CONTROL_PIN_MASK, 3), DISABLE_CONTROL_PIN_PULL_UP);
p(" macro0: %s", print_pin(MACRO_BUTTON_0_PIN, bitnum_istrue(INVERT_CONTROL_PIN_MASK, 4), DISABLE_CONTROL_PIN_PULL_UP);
p(" macro1: %s", print_pin(MACRO_BUTTON_1_PIN, bitnum_istrue(INVERT_CONTROL_PIN_MASK, 5), DISABLE_CONTROL_PIN_PULL_UP);
p(" macro2: %s", print_pin(MACRO_BUTTON_2_PIN, bitnum_istrue(INVERT_CONTROL_PIN_MASK, 6), DISABLE_CONTROL_PIN_PULL_UP);
p(" macro3: %s", print_pin(MACRO_BUTTON_3_PIN, bitnum_istrue(INVERT_CONTROL_PIN_MASK, 7), DISABLE_CONTROL_PIN_PULL_UP);
}
void print_coolant() {
p("coolant:");
p(" flood: %s", print_pin(COOLANT_FLOOD_PIN, INVERT_COOLANT_FLOOD_PIN));
p(" mist: %s", print_pin(COOLANT_MIST_PIN, INVERT_COOLANT_MIST_PIN));
p(" delay: %f", coolant_start_delay->get()); // XXX should the be int as delay_ms?
}
void print_probe() {
p("probe:");
p(" pin: %s", print_pin(PROBE_PIN, probe_invert->get(), DISABLE_PROBE_PIN_INPUT_PULLUP);
bool cms = false;
#ifdef SET_CHECK_MODE_PROBE_TO_START
cms = true;
#endif
p(" check_mode_start: %s", cms);
}
void print_comms() {
p("comms:");
// XXX
}
void print_macros() {
p("macros:");
p(" n0: %s", startup_line0->get());
p(" n1: %s", startup_line1->get());
p(" macro0: %s", user_macro0->get());
p(" macro1: %s", user_macro1->get());
p(" macro2: %s", user_macro2->get());
p(" macro3: %s", user_macro3->get());
}
void print_spindle(const char* name, Spindle* s) {
p("%s:", name);
p(" spinup_ms: %d", s->_spinup_delay);
p(" spindown_ms: %d", s->_spindown_delay);
p(" tool: 0");
p(" speeds: %s", makeSpeedMap(s));
}
void print_onoff_spindle(const char* name, Spindle* s) {
print_spindle(name, s);
p(" output_pin: %s", print_pin(s->_output_pin));
p(" enable_pin: %s", print_pin(s->_enable_pin));
p(" direction_pin: %s", print_pin(s->_direction_pin));
p(" disable_with_zero_speed: %s", tf(s->_off_with_zero_speed));
p(" zero_speed_with_disable: %s", tf(false));
}
void print_pwm_spindle(const char* name = "pwm", Spindle* s = &pwmb) {
print_onoff_spindle(name, s);
p(" pwm_freq: %d", s-?_pwm_freq)''
}
void print_relay_spindle() {
Spindle* s = &relay;
print_onoff_spindle("relay", s);
}
void print_laser_spindle() {
print_pwm_spindle("laser", s);
// XXX should this be just full_power ?
p(" laser_full_power: %u", laser_full_power->get());
}
void print_dac_spindle() {
print_onoff_spindle("dac", &dac);
}
void print_besc_spindle() {
Spindle* s = &besc;
print_pwm_spindle("besc", s);
// XXX override frequency to BEDC_PWM_FREQ and period to BESC_PULSE_PERIOD
p(" min_pulse_us: %d", int(BESC_MIN_PULSE_SECS * 1000000));
p(" max_pulse_us: %d", int(BESC_MAX_PULSE_SECS * 1000000))
}
void print_10v_spindle() {
Spindle* s = &_10v;
print_pwm_spindle("10v", s);
}
void print_vfd_spindle(const char* name, Spindle* s) {
print_spindle(name, s);
print_uart(VFD_RS485_UART_PORT,
#ifdef VFD_RS485_TXD_PIN VFD_RS485_TXD_PIN
VFD_RS485_TXD_PIN
#else
-1
#endif
,
#ifdef VFD_RS485_RXD_PIN
VFD_RS485_RXD_PIN
#else
-1
#endif
,
#ifdef VFD_RS485_RTS_PIN
VFD_RS485_RTS_PIN
#else
-1
#endif
,
#ifdef VFD_RS485_BAUD_RATE
VFD_RS485_BAUD_RATE
#else
9600
#endif
,
#ifdef VFD_RS485_PARITY
# if VFD_RS485_PARITY == Uart::Parity::None
"8n1"
# else if VFD_RS485_PARITY == Uart::Parity::Even
"8e1"
# else if VFD_RS485_PARITY == Uart::Parity::Odd
"8o1"
# endif
#else
"8n1"
#endif
);
}
void print_huanyang_spindle() {
print_vfd_spindle("huanyang", &huanyang);
}
void print_h2a_spindle() {
print_vfd_spindle("h2a", &h2a);
}
void print_yl620_spindle() {
print_vfd_spindle("yl620", &yl620);
}
void print_spindle_class() {
switch (spindle_type->get()) {
case SpindleType::NONE:
break;
case SpindleType::PWM:
print_pwm_spindle();
break;
case SpindleType::RELAY:
print_relay_spindle();
break;
case SpindleType::LASER:
print_laser_spindle();
break;
case SpindleType::DAC:
print_dac_spindle();
break;
case SpindleType::HUANYANG:
print_huanyang_spindle();
break;
case SpindleType::BESC:
print_besc_spindle();
break;
case SpindleType::_10V:
print_10v_spindle();
break;
case SpindleType::H2A:
print_h2a_spindle();
break;
case SpindleType::YL620:
print_yl620_spindle();
break;
}
}
void print_machine() {
p("board", _board);
p("name", _name);
print_stepping();
print_axes();
print_i2so();
print_spi();
print_control();
print_coolant();
print_probe();
print_comms();
print_macros();
int db = 0;
#ifdef ENABLE_SOFTWARE_DEBOUNCE
db = DEBOUNCE_PERIOD;
#endif
p("software_debounce_ms", db);
// TODO: Consider putting these under a gcode: hierarchy level? Or motion control?
p("laser_mode: %", laser_mode->get());
p("arc_tolerance: %", arc_tolerance->get());
p("junction_deviation: %", junction_deviation->get());
p("verbose_errors: %", verbose_errors->get());
bool hil = false;
#ifdef HOMING_INIT_LOCK
hil = true;
#endif
p("homing_init_lock: %s", tf(hil));
p("report_inches: %", report_inches->get());
bool epoc = false;
#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
epoc = true;
#endif
p("enable_parking_override_control: %", tf(epoc));
bool dpoi = false;
#ifdef DEACTIVATE_PARKING_UPON_INIT
dpoi = true;
#endif
p("deactivate_parking_upon_init: %", tf(dpoi));
bool clai = false;
#ifdef CHECK_LIMITS_AT_INIT
clai = true;
#endif
p("check_limits_at_init: %", tf(clai));
bool l2soa = false;
#ifdef LIMITS_TWO_SWITCHES_ON_AXES
l2soa = true;
#endif
p("limits_two_switches_on_axis: %", tf(l2soa));
bool dldh = false;
#ifdef DISABLE_LASER_DURING_HOLD
dldh = true;
#endif
p("disable_laser_during_hold: %", tf(dldh));
bool uln = false;
#ifdef USE_LINE_NUMBERS
uln = true;
#endif
p("use_line_numbers: %", tf(uln);
print_spindle_class();
}
void machine_init() {
print_machine();
}