Compare commits

..

46 Commits

Author SHA1 Message Date
byuu
81f43a4d01 Update to snes-20100807 release.
This represents a major code restructuring. The dot-based and
scanline-based renderers are now split into two separate core
libraries, asnes and bsnes.

For now at least, these are -internal- names. I'm not entirely decided
on how I'm going to handle releasing these two separate builds.
Regardless, the folders need names.

asnes has had all of the processor subfolders collapsed back into
their parent folders. In other words, ppu's functions were moved into
ppu/sppu, and then ppu was deleted, and then ppu/sppu became the new
ppu. Repeat this for the cpu, smp and dsp and there you go.

asnes/dsp also removed the DSP_STATE_MACHINE option. This was done for
the sake of consistency with the rest of the core.

asnes' debugger mode is currently extremely broken, but I will be
fixing it in time.

And for now, bsnes has kept the processor abstraction layer. I may
keep it around, not sure yet. It doesn't hurt speed or anything, so
I'm not too worried about making a decision right away.

I may throw snesfilter, snesreader and supergameboy into this folder,
just to have everything in one place. The alternate GUI forks are
definitely going in there as dotnet, cocoa and python.

Compiled output goes to the out/ folder now, to prevent conflicts with
a file and folder named bsnes, for instance.
2010-08-07 15:07:24 +00:00
byuu
9ea739aec1 Update to bsnes v067r05 release.
This will be the final release with the current source structure.

This WIP contains a bugfix so that the last scanline does not fetch
OAM items. This fixes flickering in Ninja Warriors and Lord of the
Rings.
2010-08-07 11:44:19 +00:00
byuu
254a5016e1 Update to bsnes v067r04 release.
This build simplifies the tile cache significantly, and it now builds
the cache and fetches the VRAM data during Hblank, the VRAM reads are
modeled after real hardware.
This fixes Mega lo Mania without regressing Winter Gold or Adventures
of Dr. Franken.
I also fixed a pseudo-hires back color glitch in Super Buster Bros.
2010-08-06 14:06:31 +00:00
byuu
dcc661cb28 Update to bsnes v067r03 release.
This substantially improves the S-PPU dot-renderer's sprite
processing. Instead of happening immediately at the start of the
scanline, each pixel is rendered one at a time. It eliminates the
SpriteList caching, sprite width/height caching, oam_palette caching
and oam_priority caching.

I'll explain it in more detail in the public thread in a bit.

Most noticeable is that Winter Olympics is now perfect, with no known
regressions on any of the sprite-sensitive games.
2010-08-05 14:37:02 +00:00
byuu
431d5c8db7 Update to bsnes v067r01 release.
This adds the SA-1 compiler bug workaround for GCC 4.5.0, and updates
the load special libsnes functions to also generate XML mapping data
if given empty strings.
I built the binary above with GCC 4.5.0, so let me know if any new
problems appear. What I've noticed is that when not profiled, 4.5.0 is
about 3-5% faster, but when profiled, they are equivalent in speed.

Lastly, I did some more work on the .NET/C# and Snow Leopard/Cocoa
ports. They can both load all special types of ROMs, including Super
Game Boy.

For .NET, you need to be on a 64-bit version of Windows, have .NET 3.5
installed, and have SlimDX installed (I used February 2010, but
anything later should be fine.)
For Snow Leopard, you may want to build and install libsupergameboy,
but you don't have to. Just don't try loading SGB games without it.

Yes, the .NET one is pure 64-bit. I built snes.dll and
supergameboy.dll using MinGW64-GCC 4.5.0. Since the core library
doesn't use Qt, it builds fine in 64-bit mode.
2010-08-04 12:57:37 +00:00
byuu
7b7a95af67 Update to bsnes v067 release.
I apologize, bsnes v066 had a small error in the source that resulted in the PPU not synchronizing properly to the CPU. This bug was not exposed in the images I use to test releases. I have also updated the cheat code database, which is maintained by mightymo.
2010-08-02 00:25:53 +00:00
byuu
a266a2b5e2 Update to bsnes v066 release.
Major features in this release are: serial controller emulation, a brand new scheduler that supports multiple simultaneous coprocessors, and accuracy improvements.
The serial controller is something devised by blargg. With the proper voltage adjustments (5v-9v), it is possible to wire an SNES controller to a serial port, which can then be used for bidirectional communication between the SNES, and (usually, but not only) a PC. The support in bsnes was added so that such programs could be debugged and ran from within an emulator, and not just on real hardware.
The scheduler rewrite was meant to allow the combination of coprocessors. It was specifically meant to allow the serial controller thread to run alongside the SuperFX and SA-1 coprocessor threads, but it also allows fun things like MSU1 support in SuperFX and SA-1 games, and even creating dev cartridges that utilize both the SuperFX and SA-1 at the same time. The one thing not yet allowed is running multiple instances of the exact same coprocessor at the same time, as this is due to design constraints favoring code inlining.
There are two important accuracy updates. The first is that when PAL video mode is used without being in overscan mode, black bars are shown. Emulators have always shown this black bar at the bottom of the screen, but this is actually incorrect. resxto took pictures from his PAL TV that shows the image is in fact vertically centered in the screen. bsnes has been updated to reflect this.
Also interesting is that I have backported some code from the dot-based PPU renderer. In the game Uniracers, it writes to OAM during Hblank, and expects the write to go to a specific address. In previous releases, that address was hard-coded to go to the required memory location. But the way the hardware really works is that the write goes to the extended attribute address for the last sprite that the PPU fetched, as the PPU is still asserting the OAM address bus. Now, due to the precision limitations, I was not able to also port timing access during the active display period. However, this is sufficient to at least remove the last global hack from the older, speed-focused scanline renderer.
2010-08-01 05:46:17 +00:00
byuu
53f03be5a2 Update to bsnes v065r05 release.
Fairly major changes here, I'd appreciate some testing if anyone's not
busy. Note that the save state version has been bumped, so consider
WIP saves unstable until v066 official.

Rewrote the entire scheduling system. Instead of having a global class
that all of the chips call into, each class now contains its own
thread, clock and frequency information. They also implement their own
syncing primitives, but with a tiny bit of standardization.
void step(unsigned clocks) -- add to/subtract from counter based on
master/slave select.
void synchronize_chip() -- make sure chip is caught up to our current
thread before continuing.

So we go from scheduler.sync_copcpu() to sa1.synchronize_cpu(); with
the sa1. being omitted inside the SA1 class itself.

The S-CPU implementation also adds an array<Processor*> coprocessors;
list, and iterates them all. This allows bsnes to have an infinite
number of additional coprocessors at the same time. But there is still
the limitation of only one of each type. So you can use the XML memory
mapping to make a cartridge that contains a SuperFX2 chip, an SA-1
chip, an MSU1 chip and that can be debugged via serial communications.
However, you can't make a cart that has two SA-1 chips. That
limitation probably could be overcome as well, but it's less
important. I mainly wanted to be able to use MSU1 and Serial on
special chip games.

I implemented the synchronization primitives in the chip base classes,
which means that for inlining purposes I had to make it all global, so
you'll have src/cpu/synchronization.hpp, etc now. This was to reduce
some redundancy of having the same exact code inside both bPPU and
sPPU, etc. I'll probably make a Coprocessor : Processor class to
automatically implement the step+synchronize_cpu functions for the
five coprocessors next.

The Scheduler class is actually still around, but it's very trivial
now. It simply saves the program thread and last active emulation
thread for the purpose of entering and exiting emulation. Because I
killed Scheduler::init(), which was responsible for destroying and re-
creating threads, I had to create the threads inside
ChipName::create(), which I call at power and reset. This means that
to load a save state, the system needs to be reset to destroy those
threads.

This caused some troubles with the SA-1, specifically in Kirby's
Dreamland 3, but no other games I tried. I had to move the SA-1 bus
initialization to the power-on event, and only reset when loading a
save state. It would appear that the SA-1 is leaking bus mapping state
information, presumably from the SA-1 MMIO registers that control some
of the mapping layout. If I add remapping of those sections into the
SA1::serialize() function, it should take care of that problem and I
can move sa1bus.init() back into SA1::reset().

All of this results in a 2-3% speed hit for normal games, and a 6-7%
speed hit for special chip games. The former should not have any speed
hit, so I will have to look into what's going on there. The latter we
have no choice on, to allow for more than one coprocessor, the
coprocessor synchronization needs to iterate a list, compared to a
single hard-coded check in the previous builds. If I can figure out
what is happening with the regular game speeds, it should drop the
special chip hit to 4%. Worst part is this hit is in addition to the
10-15% speed hit from v065 official where I wasn't syncing the special
chips up to the CPU except once per scanline and on MMIO accesses.

But that's progress. v065 is definitely going to be the preferred
build for playing SuperFX/SA-1 games for a long time to come.
2010-07-29 16:24:28 +00:00
byuu
77375c3c68 Update to bsnes v065r04 release.
Only posting because the link changed, it's the exact same as r03.
Only difference is some improvements to nall:
- string class gains lower(), upper(), transform(), *trim(_once)
- file::print now accepts variadic arguments like print
Examples:
    strtr(item, "ABCDEF", "abcdef"); -> item.transform("ABCDEF",
    "abcdef");
    strlower(item); -> item.lower();
    fp.print(string("Age: ", age, "\n")); -> fp.print("Age: ", age,
    "\n");
2010-07-16 14:40:08 +00:00
byuu
dce3e61f06 Update to bsnes v065r03 release.
Polishing work. My dlopen wrapper accepts an optional path argument
now, and the basename setting is universal instead of just for MSU1,
so serial-based games can load in a dynamic client library directly.

Still need to update snesserver to accept another argument for the
program library name to load.

Upped the serial polling frequency to 8x UART speed per blargg.

And a very tricky change, I updated nall/string to remove sprint(). At
first, I used:
    string name = string() << path << basename << ".msu";


I then improved upon that with:
    string name = sprint(path, basename, ".msu");


Tonight I went ahead and finished this by taking advantage of variadic
templates for the constructor itself. Very tricky because my
conversion functions created new strings to copy data into, which
would create an infinite loop; then of course I also had to leave the
copy constructor behind even after this. So the end result is the
following:
    string name(path, basename, ".msu");


Oh, and I found a typo in MSU1, it wasn't using the proper extension
when loading a save state for the data file.
2010-07-12 15:56:17 +00:00
byuu
20b44ddfd1 Update to bsnes v065r02 release.
Be warned, this is going to get complicated.

To start out with, serial.tar.bz2 is a simple SNES program that is
right now being used for integrity testing. The important part is
here:

    serial_read:
    lda #$01
    -; bit $4017; bne -
    -; bit $4017; beq -
    nop #24
    pha; lda $4017; eor #$01; ror; pla; ror; nop #18
    pha; lda $4017; eor #$01; ror; pla; ror; nop #18
    pha; lda $4017; eor #$01; ror; pla; ror; nop #18
    pha; lda $4017; eor #$01; ror; pla; ror; nop #18
    pha; lda $4017; eor #$01; ror; pla; ror; nop #18
    pha; lda $4017; eor #$01; ror; pla; ror; nop #18
    pha; lda $4017; eor #$01; ror; pla; ror; nop #18
    pha; lda $4017; eor #$01; ror; pla; ror; rts

    serial_write:
    pha #6; pla #6; wdm #$00; stz $4016; sec
    pha #6; pla #6; wdm #$00; sta $4016; ror
    pha #6; pla #6; wdm #$00; sta $4016; ror
    pha #6; pla #6; wdm #$00; sta $4016; ror
    pha #6; pla #6; wdm #$00; sta $4016; ror
    pha #6; pla #6; wdm #$00; sta $4016; ror
    pha #6; pla #6; wdm #$00; sta $4016; ror
    pha #6; pla #6; wdm #$00; sta $4016; ror
    pha #6; pla #6; wdm #$00; sta $4016; ror
    pha #6; pla #6; wdm #$00; sta $4016; rts


Fairly ugly, but it works.

Next, I needed a way to be able to execute the client in such a way
that it would work with both bsnes and real hardware, with no
recompilation or changes needed. The nice way would be some form of
inter-process communication, but well, I don't really do that. And
it's probably extremely platform-dependent.

So I used what was available to me already, a cross-platform dlopen
wrapper for dynamic library support. The client application is written
and compiled into a shared library that exports a single function,
snesserial_main, which runs as if it is its own program and never
returns. It takes three parameters, the time tick(), read() and
write() function pointers. It can call them to do its work. This
process is put in a folder called snesserial for now. It's the
accompanying program to serial.sfc.

Now I have both bsnes (v065.02 above) and snesserver, they both act
the same way. They load in snesserial, and give it those three
functions and call its main entry point. The difference is that the
read/write functions in bsnes simulate a serial strobe to the
emulator, and the read/write functions in snesserver actually read and
write to the TTY device you specify as the program argument, eg for me
I use: ./snesserver /dev/ttyUSB0
Mmm, USB<>SNES for the win.

There's a limitation in my dlopen wrapper, it adds the libN.so or
N.dll stuff automatically, making it difficult to also specify a path.
That means that for now you have to put libsnesserial.so into
/usr/local/lib. Obviously you don't want to be limited to just one
program. The plan is to have it load the library that matches the game
name:
zelda.sfc + zelda.so/zelda.dll/zelda.dylib (yeah, no libzelda.so.)

Now, the bsnes+serial emulation works on any platform. However,
snesserver only works on Linux. You can blame that one on Microsoft.
They make you require special kernel drivers to be able to access the
serial port. I'm not going through the trouble. OS X can probably use
it if it makes the appropriate /dev/tty device, but I'm not going to
test it.

Activating the module can only be done with a custom XML file, as
before. Still need to work on integration with the controller port
options, as it's not really a special chip.

Lastly, the timing is "pretty good", but not perfect. It accepted a
374 cycle-per-bit loop for serial writes from the SNES to the PC, but
snesserver did not. I had to adjust to 364 cycle-per-bit loop for it
to work on both.

This is really bad, because the goal here is to use the PC as the
testbed to make sure it'll work on the real thing. On the plus side,
you only have to get it working one time, and stick with the
serial_read/serial_write functions like at the top of this post. But I
do need to address this. I'm not entirely sure how to more accurately
simulate a serial port at this point though.

Oh, and I am thinking I need to expand the read/write functions to
process more than one byte at a time. That should greatly speed up
transfer time on the real thing. I also need to add some slowdown so
the emulator more closely matches hardware speeds.
2010-07-11 18:27:42 +00:00
byuu
79f20030a0 Update to bsnes v065r01 release.
In order to fully decode the 16MB address maps, I am going to need to
use blargg's stop-and-swap, which will require a serial-communications
program. To develop this program, and others in the future, as well as
for testing automation, it would be very beneficial to have a way to
debug these programs through bsnes.

So what I'm working on now is emulating a serial port inside bsnes.
The basic premise is to start with a custom XML map that specifies its
presence:

    <?xml version="1.0" encoding="UTF-8"?>
    <cartridge region="NTSC">
    <rom>
    <map mode="linear" address="00-7f:8000-ffff"/>
    <map mode="linear" address="80-ff:8000-ffff"/>
    </rom>

    <ram size="2000">
    <map mode="linear" address="70-7f:0000-7fff"/>
    </ram>

    <serial baud="57600">
    </serial>
    </cartridge>


I am essentially treating the serial communication as a special chip.
One could argue this belongs as an option under controllers, and one
would be right. But as I can't have two coprocessor threads at the
same time, this is how it is for right now. Eventually it'll probably
be under controller port 2, and only enabled in the debugger builds.

So, this pseudo-coprocessor ... it's basically emulating the PC-side
communications program.
Meaning I still need to externalize this somehow so that any program
can be run.
The below program writes 0x96 six times, and then reads in data six
times. Well, technically forever, but the SNES ROM only writes six
times at the end.

    void Serial::enter() {
    scheduler.clock.cop_freq = cartridge.serial_baud_rate() * 2;

    latch = 0;
    add_clocks(512);

    for(unsigned i = 0; i < 6; i++) {
    latch = 1; add_clocks(2);

    latch = 1; add_clocks(2);
    latch = 0; add_clocks(2);
    latch = 0; add_clocks(2);
    latch = 1; add_clocks(2);
    latch = 0; add_clocks(2);
    latch = 1; add_clocks(2);
    latch = 1; add_clocks(2);
    latch = 0; add_clocks(2);

    latch = 0; add_clocks(2);
    }

    while(true) {
    while(cpu.joylatch() == 0) add_clocks(1);
    while(cpu.joylatch() == 1) add_clocks(1);
    add_clocks(1);

    uint8 data = 0;
    for(unsigned i = 0; i < 8; i++) {
    add_clocks(2);
    data = (data << 1) | cpu.joylatch();
    }

    print("Read ", strhex<2>(data), "\n");
    }
    }


The SNES code looks like this:

    //21,477,272hz cpu / 57,600hz serial = ~372.87 clocks/tick

    org $8000
    xce; rep #$10
    ldx #$01ff; txs

    jsr serial_read; sta $700000
    jsr serial_read; sta $700001
    jsr serial_read; sta $700002
    jsr serial_read; sta $700003
    jsr serial_read; sta $700004
    jsr serial_read; sta $700005

    nop #46

    jsr serial_write
    jsr serial_write
    jsr serial_write
    jsr serial_write
    jsr serial_write
    jsr serial_write

    //hang
    -; bra -

    serial_read:
    -; lda $4017; and #$01; bne -
    -; lda $4017; and #$01; beq -
    nop #23; lda $00; nop #10

    lda $4017; and #$01; asl $00; ora $00; sta $00; lda $00; nop #13
    lda $4017; and #$01; asl $00; ora $00; sta $00; lda $00; nop #13
    lda $4017; and #$01; asl $00; ora $00; sta $00; lda $00; nop #13
    lda $4017; and #$01; asl $00; ora $00; sta $00; lda $00; nop #13
    lda $4017; and #$01; asl $00; ora $00; sta $00; lda $00; nop #13
    lda $4017; and #$01; asl $00; ora $00; sta $00; lda $00; nop #13
    lda $4017; and #$01; asl $00; ora $00; sta $00; lda $00; nop #13
    lda $4017; and #$01; asl $00; ora $00; sta $00; lda $00; nop #13

    rts

    serial_write:
    lda #$01; sta $4016; nop #23

    lda #$00; sta $4016; nop #23

    lda #$01; sta $4016; nop #23
    lda #$00; sta $4016; nop #23
    lda #$00; sta $4016; nop #23
    lda #$01; sta $4016; nop #23
    lda #$00; sta $4016; nop #23
    lda #$01; sta $4016; nop #23
    lda #$01; sta $4016; nop #23
    lda #$00; sta $4016; nop #23

    lda #$01; sta $4016; nop #23

    rts


That reads six times, and then writes six times.

I haven't made the test do an infinite PC->SNES transfer, but I have
for SNES->PC. No errors after millions of bytes, even if I stride the
CPU timing.

As this is just an example, it's pretty lousy with actual timing, but
I guess that's a good thing as it still works quite well. More
tolerance = less potential for errors.

**Now, this part is important.**

While debugging this, I noticed that my serial coprocessor was only
running when Vcounter=n,Hcounter=0. In other words, nothing was making
the CPU synchronize back to the coprocessor, except the once-per-
scanline synchronization that was there in case of CPU stalls.

That's ... really bad. MSU1 worked only because it buffers a few
hundred samples for audio mixing. I don't really know why this didn't
cause an issue for SuperFX, SA-1 or Super Game Boy games; but in
theory they were at most 682x less precise than they should have been
in terms of CPU->coprocessor synchronization.

Making it sync after every add_clocks() call results in a 10% speed
hit to SuperFX, SA-1 and Super Game Boy emulation, unfortunately.

I don't notice any quality improvements in emulation, but in theory
the lack of this syncing before effectively eliminated the benefits of
the SuperFX and SA-1 being cycle based.

I'm going to have to look into this more to understand if I was
intentionally not doing this sync before, or if I really did forget
it. I'm thinking it was an oversight right now. The SuperFX and SA-1
don't really talk back and forth a whole hell of a lot, so once a
scanline probably wouldn't be that noticeable.

But holy hell ... now that I'm thinking about it, I wonder if this was
the cause of all that craziness in trying to sync up the Super Game
Boy's VRAM transfers. Yeah, definitely need to look into this more ...
2010-07-09 15:02:23 +00:00
byuu
79b939e1c7 Update to bsnes v065 release.
It's been a while, so here is a new release of bsnes.
Unfortunately I don't have a full changelog this time. Most of the work went into stabilizing libsnes (which is used by the experimental .NET, Cocoa and Python UIs; as well as by Richard Bannister's OS X port).
The Windows binary package now comes with all three variants included: bsnes.exe, the standard version that casual users should run; bsnes-debugger.exe, for SNES programmers and ROM hackers only; and bsnes-accurate.exe, which should not be used by anybody, ever.
In all seriousness, bsnes-accurate.exe is bsnes with the dot-based S-PPU renderer. It's twice as slow as the normal build, and you won't really notice any differences except in Air Strike Patrol. It's there for the curious and for any SNES programmers who want to try making some really awesome video demos.
Changelog:
* OS X port builds once again; now requires gcc44 from Macports
* libsnes API finalized
* fixed a bug with S-CPU debugger breakpoints
* various source cleanup
2010-06-27 12:29:18 +00:00
byuu
3ae74ff5a5 Update to bsnes v064r08 release.
Fixes Super Game Boy save RAM/RTC data.
Fixes a crash when you pass a null pointer for the second Sufami Turbo
cartridge, etc.

[No archive available]
2010-06-14 02:01:12 +00:00
byuu
7351b910c5 Update to bsnes v064r07 release.
Wow, that's probably a record for the longest time between two WIPs.
My priority has obviously shifted to language learning, but as time
goes on things should balance out better.

Okay, changes:
- linear_vector, pointer_vector and array are greatly improved: added
insert and remove (can insert or remove more than one item at a time
for O(n) performance); renamed add to append; improved array::find to
use optional<unsigned> instead of -1 trick ala the new strpos function
- fixed string to floating-point conversion for international systems
that use "," for fractions
- libsnes::snes_get_memory_(size|data) will return 0 if you try and
access: BS-X data without a BS-X cartridge loaded, same for ST, same
for SGB; this is in case someone tries to write a generic function
that writes all memory that is valid instead of special casing based
on the cartridge type they loaded
- libsnes::snes_load_cartridge_* returns a boolean result to indicate
success; always returns true for now, but it's meant to eventually
catch when libgambatte fails to load a GB cartridge -- bsnes itself
will never fail to load an SNES/BSX/ST cartridge
- Linux monospace font changed from "Monospace" to "Liberation Mono",
because the former is not monospaced when your desktop environment is
set to Japanese, etc.
- some other misc. cleanups

[No archive available]
2010-06-06 05:28:35 +00:00
byuu
6bbb609f2f Update to bsnes v064r06 release.
Updated to build using Xcode Snow Leopard+Qt/Cocoa 4.6.2+Macports
gcc44.
2010-05-03 14:04:30 +00:00
byuu
0d19902435 Update to bsnes v064r05 release.
- swaps the video_refresh output from BGR555 to RGB555, for the sake
of direct copying for certain APIs. Not going to do RGB565 because the
G5 bit doesn't exist, and faking it is lame.

[Meanwhile, in bsnesui 2010-04-24...]

bsnes.python:
- adds more icons and stuff.
bsnes.net:
- new port, targets C#, binds every function in libsnes
- targets .NET 3.5 ... I honestly would have went with 4.0 for the
nicer IntPtr addition alone, but the SP3 requirement may put off a lot
of people
- video output that doesn't scale (or clean up when dropping to a
smaller size)
- Port1 joypad input support via keyboard only
bsnes.cocoa:
- stuck in a time/space wormhole until Apple gets their heads out of
their asses and updates GCC

Probably the coolest thing about Python and .NET is that anyone can
now compile these GUIs and modify them just by having the run-times
installed. I really like the way MS is distributing the complete
development chain along with the run-time.
2010-04-25 08:39:41 +00:00
byuu
44bab83d68 Update to bsnes v064r04 release.
Fixes S-CPU debugger breakpoint issue.
libsnes always returns 0 for "no memory present" now, never -1U.

[Meanwhile, in bsnes-python 2010-04-20...]

Won't error if there's no joypad present.
Swaps menu and status bars with a toolbar.
Adds keyboard support - you can use both a keyboard and joypad for
input now.
Won't crash if RAM doesn't exist yet.
Won't crash if game uses no RAM.
2010-04-20 22:33:44 +00:00
byuu
42a4c1d60e Update to bsnes v064r03 release.
Some changes to libsnes. Really hoping the API will be stable from
this point out ...
2010-04-19 17:37:14 +00:00
byuu
645689e683 Update to bsnes v064r02 release.
Nothing interesting, just added bsnes-qt.py to ui_python. No input
handling, but OpenGL-based video resizing and libao audio. Doesn't use
numpy, found a workaround for that. It's obvious that we need
video/audio/input handled by an external library for this to work, so
I'm thinking now about a rewrite of ruby to a C-like interface.
2010-04-18 14:09:17 +00:00
byuu
8b0153daf0 Update to bsnes v064r01 release.
Adds bool snes_get_region(void) to libsnes (permanent).
Adds snes_blit_colortable and snes_blit to libsnes (temporary).
Adds src/ui_python with a basic Python GUI, and abstraction between
the libsnes wrapper and PyGTK (so it can be reused for PyQt, etc.)

The GUI has:
- menubar
- video output (2x scale, supports NTSC/PAL, hires, overscan and
interlace correctly)
- audio output (libao through ALSA)
- input (very lousy key press events, they toggle off and on if you
hold a key down ...)

I'm getting full-speed, so that's good.

Not sure where I want to take all of this stuff yet, but it's kind of
neat for now I suppose. It would be kinda fun to go really out there
with completely new GUI design styles that aren't just your standard
menubar+video. Things like a toolbar, mouse gestures, really deep
platform integration, AVI-based recording, frame analysis shit, game-
specific GUI shit (perhaps map touch-screen input + gyroscope on top
of a simulated gamepad; or perhaps read the contents of RAM and
provide statistical information on the sides of the video output
screen?), I dunno ... whatever. It's there, it's possible, but it's
certainly not good enough to replace the official C++ Qt port, and I
don't really have the time or patience to make it that good myself.
2010-04-16 13:40:27 +00:00
byuu
9ca1e259cb Update to bsnes v064 release.
A thank you to everyone who helped test the RC to ensure stability. I've uploaded the official v064 release to Google Code.
The most important change in this release is the cycle-based PPU renderer; but due to performance reasons the scanline-based renderer remains the default in the Windows binary. If you want to try out the cycle-based renderer, you will need to compile from source for now.
Another major change is the introduction of libsnes, which allows one to build bsnes as a shared library that can be used from other programming languages. It is intended both to create a regression testing framework, and to provide API stability for the various projects that use the bsnes core. While I can't guarantee the API to libsnes won't change, I will properly revision it and do everything I can to avoid changing it if possible.
2010-04-14 15:46:56 +00:00
byuu
7227107d5e Update to bsnes v063r14 release.
- libsnes updated ... should be the official syntax now, I don't
expect any more changes
- added kode54's patch for HQ2x
- NOT going to add the libjma Windows Unicode fix, I want something
more elegant than hijacking all of std::ifstream, so that can wait for
now
- fixed status.irq_lock for Power Rangers
- went back to blargg's 1.024MHz S-DSP for the fast build
- updated mightymo's cheat pack to the latest version
2010-04-13 15:21:37 +00:00
byuu
65ff00e28a Update to bsnes v064rc1 release.
I'm posting a release candidate for v064, for which I am looking for beta testers. If you would like to help out, please give it a try and report any bugs or regressions on the forum. If all goes well, this will be posted as v064 official shortly.
Note that you will need the Qt run-times from bsnes v063 official to use this. Also, this build does not use the new cycle-based PPU. Official builds are going to continue using the scanline-based renderer. This build should be about 10% faster than v063 was, which should lower the system requirements further.
2010-04-12 15:25:39 +00:00
byuu
717aa69d42 Update to bsnes v063r12 release.
Well I really don't want to think about a caching system right now, so
I skipped that.

- added sPPU::Background::get_tile(), which computes its own copies of
mask_xy, screen_xy, tile_size, etc; allows BG3 offset-per-tile to
compute tile correctly
- fixed two V=(start of Vblank) checks that lacked overscan tests
- removed fade stuff from video output, going to rely exclusively on
filters for that stuff now
- modified state. to t. for brevity
- cached regs.overscan for overscan() function
- PPUDebugger uses interlace_enable() and overscan_enable() to avoid
conflicts with the base classes; forgot to move PPUcounter to
PPUCounter
- added controller selection capability to libsnes; still needs cheat
code and save state support

Should fix that Adventure Island thing, confirmation would be
appreciated.

I tried some quick hacks and was able to get mode7 caching (NHL '94)
and OAM caching (Winter Gold) working without breaking anything, but
it's too scanline-PPU for my tastes. There's really no reason to half-
ass this just to get games playable, so I'll wait and do it the right
way later on.

Only worked on this for about an hour today ... I must be burned out.
Think I'll try messing around with Python or something, since Ruby is
a dead-end for using libsnes.
2010-04-11 13:00:48 +00:00
byuu
35fdb71f3d Update to bsnes v063r11 release.
Writing to SETINI will update video mode priorities for EXTBG mode.
Merged pixel output { main, sub { valid, priority } } into just
priority. A priority of zero is considered invalid now.
Merged pixel output { main, sub { palette_index, palette_number } }
into just palette with the tiledata bits for direct color mode at
d8-d10.
This cuts a lot of copying and extra comparisons out of the final
screen rendering pass, though it doesn't really help speed.
Output is always 512x448 now. Having trouble deciding on how to do
video for that, but I'll post more on that later.
Really need to figure out how offset-per-tile fetches in regards to
lores v hires and SC size, tile size and wrapping.
For now, I simplified it to constants; whereas the scanline-renderer
uses the BG3 settings.
I also made it not perform OPT lookup on BG3 and BG4 anymore. Skips a
pointless trickery of setting the OPT valid bit to zero for BG3,BG4
and is faster.
Forgot an overscan check in sprite drawing, should draw sprites
properly to V=225-239 now.
Made the mode7 variable names more consistent.
2010-04-09 16:00:03 +00:00
byuu
c33f70a8c6 Update to bsnes v063r10 release.
With this release, the final last-generation holdout, the scanline-based PPU renderer, has been replaced with a true, accurate, cycle-level PPU that renders one dot at a time. Finally, this fulfills the greatest milestone remaining in the SNES emulation scene. With every processor emulated at the lowest possible level, SNES emulation finally rivals the accuracy levels that NES emulators have offered for years.
Now, please do understand that this release is not a beta, nor is it even an alpha. It is simply a preview of things to come, and as such you can consider it a pre-alpha. There are many caveats at this time.
First, it is very slow. More than twice as slow as v063 official. There have been absolutely no optimizations whatsoever to the new dot-based renderer. I do expect to be able to speed this up significantly in future releases.
Second, this may lock up on Windows Vista and later for unknown reasons. I haven't had a chance to look into it; so stick with Windows XP or Linux for now.
Third, save states are not supported yet. If you try and use them anyway, bad things will happen.
Fourth, and most importantly, this isn't 100% bit-perfect by any stretch of the imagination. Off the top of my head, memory is accessed far too often, the OAM and CGRAM address lines are not controlled by the S-PPU during active display, none of the various glitches are supported, and the OAM renderer does not pre-cache the next scanline's sprites, it happens on the same line for now.
I will obviously be doing my best to improve the accuracy of the aforementioned things. But even with those missing, this is still leaps and bounds above a pure scanline-based renderer. It essentially provides 682 times the parallelism. It is enough to finally properly emulate the shadow effect in Air Strike Patrol, and it finally eliminates the "PPU Hclock render position" hack once and for all.
Lastly, you'll need the DLLs from v063 official. I didn't bother to include them this time.
Enjoy!
2010-04-07 14:40:59 +00:00
byuu
0a3fdc404d Update to bsnes v063r09 release.
So that's about 24 solid hours worth of programming in two days. Holy
fuck am I exhausted. Don't expect the last bits any time soon.

Missing features:
- Mode 7 renderer
- OAM previous-line caching
- offset-per-tile mode
- some edge cases in color add/sub
- hires
- interlace
- overscan
- S-PPU control over VRAM, OAM, CGRAM during active display

Speed hit is about as bad as I had feared. 172fps with scanline
rendering to 80fps with dot rendering. I'm guessing that with
optimizations I can make it to ~100-110fps.
2010-04-05 18:38:43 +00:00
byuu
efa7879c6d Update to bsnes v063r08 release.
No binary, this is just a point release.

I have basic lores BG1-4 rendering with mosaic added. No offset-per-
tile, no windowing, no color math (requires windowing), no sprites, no
hires, no interlace, no mode7.

It's enough to see how powerful the concept is already, though.
- Battle Blaze intro looks just fine (can't beat a battle because I
can't see my sprites or save states yet)
- Dai Kaijuu Monogatari II stat bar looks fine (no duplicated line)
- Super Metroid looks fine (no extra status bar line)
- Air Strike Patrol shows the translucent shadow for your plane (but
the left-hand scrolling is glitchy ... not sure what's up yet)

Speed is ... yeah, it's bad. About 50-60% speed. But it can get
better, I'm being really lazy and completely recomputing everything
for each pixel. A very large number of these operations can be cached.
I'm going to wait until the renderer matches the quality of the
scanline-renderer before optimizing; and I'm not going to push too far
on optimizing this (eg I probably won't bring back the tiledata
planar->packed conversion cache.)

I'm designing this similar to MooglyGuy's N64 renderer, putting each
component in its own class. So far I'm really liking the concept.
2010-04-05 13:28:36 +00:00
byuu
b11f22f517 Update to bsnes v063r07 release.
src/lib is no more, merged libco, nall and ruby into src/.

libsnes has been improved, builds in when you "make library" now.

XML memory map generation happens from a nall template header, so both
libsnes (used by ui_sdl) and ui_qt can run again without snesreader.

ui_sdl improved, can run any game via command-line, but doesn't load
or save RAM yet.

And most importantly, much work has gone into sPPU, the new cycle-
based PPU renderer. It has enough support to be compatible with all
games ($2134-213f are mostly complete, just missing range/time over
flags and VRAM/OAM/CGRAM blocking.) It only renders the back color, as
if you had all BG and OAM layers disabled.

At this point, if you run Air Strike Patrol, thanks to its gradient
fade highlighting, you can see the plane's shadow, just as on real
hardware now. It also runs test_hello and test_noise, which I will
upload shortly.
2010-04-04 18:42:09 +00:00
byuu
9614275b34 Update to bsnes v063r03 release.
Extremely substantial code structure changes this time. Probably the
most in four years.

All of the SNES core now resides in src/snes, and the contents of
system have been unrolled into this directory as well. This folder
gets its own Makefile now, and some special build commands, "make
library" and "make install-library". This creates static and dynamic
link libraries of the core, completely devoid of Qt, ruby, the GUI,
etc.

There's a new module as well, src/snes/libsnes. This is a C interface
that will let you initialize and control the bsnes core without the
need for anything more than a 1KB header file.

To test this, I've created a UI fork, ui_sdl. Very very simple, 2KB,
nothing there at all really, it just boots up Zelda 3 and runs it
directly with keyboard input support and video only. The important
point here is that the ui_sdl project does not reference the core, or
ruby, or Qt, or anything else, and is fully C++98 (though it could
also be C89 if desired.)

Now I'm being a bit lazy and using the compiled objects directly, but
it'd be just as easy to replace them with a library include directive,
or even dynamically link against the shared library and use an
entirely different language.

It's not actually my goal to make a C++ SDL port, what I really want
to do is make a port using Ruby only. May not be so easy, we'll have
to see how one accesses shared libraries in it.

The main src/Makefile was also simplified for the sake of supporting
non-Qt code. All of the Qt and ruby references were moved into the
src/ui_qt/Makefile.

I fixed up aDSP to compile again, but you still have to manually
comment out sDSP and comment in aDSP. Doing so will net you a 6-12%
speedup at the cost of some accuracy.

Lastly, I added a workaround for the Battletech 3050 splash screen.
2010-04-02 15:22:04 +00:00
byuu
9995876bc5 Update to bsnes v063r02 release.
It would be a really good idea to test all of the HDMA-sensitive games
with this WIP, if anyone's up for it.

Rewrote most of sCPU::DMA. It now implements a parallel two-stage
pipeline to more closely model the hardware. Even if it turns out to
be wrong, simply making dma_write() immediate would revert it to the
old behavior. Fixed a bug where HDMA init and run were always syncing
to the DMA counter, even when a DMA was already in progress. Will
speed up the S-CPU in a very, very small number of games, namely
College Football '97. Most games avoid this because it can crash
CPUr1. New DMA variables means new save state version, sorry.

I did not add the MDR override code, because it's too fucking insane.
Speedy Gonzales still works.

Removed the status bar size grip entirely. There's really no point in
it being there in windowed mode since you can already grip the sides
of the window anyway. Added space to each side of the status text so
that it doesn't nail the very edge of the monitor.

Added checks in XML mapping to not map in special chip sections when
you try and load BIOSes directly, which will stop the SGB and BS-X
BIOSes from crashing the emulator. Load it the right way and it'll
work fine, as always.

Fixed the loader window to display screenshots properly when you have
HTML entities in the filename, eg &, < and >.
2010-03-31 13:40:33 +00:00
byuu
43a3991ddf Update to bsnes v063r01 release.
I've had enough of idiots incapable of finding fullscreen settings.
The menubar is enabled in fullscreen mode by default. A new option in
settings->configuration->video will let you hide it as with v063
official. I don't want to hear about how I shouldn't allow any
settings to be configured differently in fullscreen mode, or how it
should be in a GUI panel, or whatever. I will ignore you if you bring
it up.

I've also added the strpos / qstrpos function->class code, as
mentioned in the programming section.
2010-03-29 17:41:11 +00:00
byuu
27c24bc8a6 Update to bsnes v063 release.
Time for another (hopefully) stable release. The changelog has all updates since the last stable release.
Most notably, this release features substantial accuracy improvements all around. Almost all of them represent brand new findings never before seen in any SNES emulator.
Changelog:
    - fixed off-by-one buffer size issue in S-PPU RTO calculations [PiCiJi]
    - added XML parser
    - added XML-based memory mapping system
    - moved header-based memory mapping code into snesreader library
    - added some linker flags for Fedora [belegdol]
    - added cheat code database; with codes for over 1,500 games [mightymo]
    - fixed a bug where S-CPU IRQs were being tested one cycle early on direct page indexed read opcodes
    - added global cheat system enable/disable checkbox to cheat code editor
    - fixed bug in overflow calculation of S-CPU ADC and SBC opcodes in BCD mode [blargg]
    - emulated the S-CPU ALU MUL and DIV hardware delays with partial result calculation steps [blargg]
    - controller port read now returns real-time results of B button when strobe latch is raised
    - major improvements to emulation of the S-SMP TEST register [blargg, byuu]
    - fixed DSP2 memory map [Overload]
    - "Apply Patch" checkbox will now scan UPS patch folder if one is set in the paths section
    - fixed S-CPU TSC negative flag calculation in emulation mode [address]
    - added "make uninstall" command to Makefile for Linux users
    - S-CPU (H)DMA now updates the S-CPU MDR; fixes a freeze in Speedy Gonzales - Stage 6-1
    - very substantial code cleanups and optimizations as a result of moving from C++98 to C++0x
2010-03-28 15:46:44 +00:00
byuu
fac95dfec5 Update to bsnes v062r10 release.
Added make uninstall, and fixed up nall::function to also bind lambdas
that don't yet exist in GCC 4.4.

Spent most of tonight rewriting the standalone UPS patcher.
2010-03-24 14:19:38 +00:00
byuu
362542924e Update to bsnes v062r09 release.
Mostly minor stuff again.

Fixes:
array, linear_vector and pointer_vector need to set source.pool = 0
before calling reset() to avoid destroying the object we're trying to
move.
All of nall::string is inside namespace nall now. No idea what I was
trying to do before with the half-global approach.
nall::function gains a reset() function, more obvious than func =
(void*)0;
The movie file loader wasn't binding the right action when changing
files and clicking load, can't believe nobody noticed that one.
2010-03-23 12:12:10 +00:00
byuu
4179282244 Update to bsnes v062r08 release.
This WIP has bsnes.exe, snesreader.dll, and src/. If you need anything
else, get it from past releases, please.

I fixed TSC negative flag calculation in emulation mode. Will pass
this test now:
http://blargg.parodius.com/snes-tests/snes_test_tsc.zip

_Way_ too obscure to affect anything, but definitely good to get it
right.

Also rewrote nall/function.hpp to use C++0x variadic templates. New
version is ~85 lines instead of ~190, 40% smaller, doesn't require
recursively including itself, doesn't require the C preprocessor,
evaluates to ensure the member function pointer is big enough to hold
what you're assigning statically (at compile time) instead of
dynamically (at run time), and supports infinite arguments instead of
zero to eight now.
2010-03-21 07:36:46 +00:00
byuu
02820ef2e9 Update to bsnes v062r07 release.
This is source code only, no binaries. Sorry, worn out after spending
four hours straight writing crazy ass Julian<>Gregorian date
functions. Holy fucking hell that is crazy shit. Tell me, how many
days have passed since 01-01-4731 BC on the Julian calendar?

Okay, this really was just about taking advantage of vectors inside of
vectors. I've updated the XML parser to use vectors of actual objects
instead of pointers. This makes cleanup free, and turns countless ->'s
into .'s -- much nicer to look at. I may take advantage of overloaded
operators for something now, not sure yet.
2010-03-19 12:50:55 +00:00
byuu
0ecce7b93d Update to bsnes v062r06 release.
You'll need snesreader's DLL from my last WIP post to use the above.

This initializes mode, region and ram_size again in Cartridge::load()
to stop the phantom SRAM files from being generated.
This fixes DSP-2 mapping to match Overload's findings (which requires
an unposted snesreader, so Dungeon Master won't run for you guys yet.)
This removes nall/traits.hpp and uses std::tr1::type_traits instead.
It also drops move, forward and identity in favor of those from
std::tr1::utility*.
This fixes linear_vector and pointer_vector to not crash when using
vectors of vectors and copying them.
This fixed linear_vector, pointer_vector and array to initialize all
internal variables for all constructors.
This fixes the file browser to look for patches in your patch
directory, so the "Apply Patch" box should work correctly now.

* I have no objection to using functions from the C++ standard library
when they don't suck.
2010-03-18 15:32:55 +00:00
byuu
f94fcd6f30 Update to bsnes v062r05 release.
To run this, you'll need the DLLs from v062r04's public beta, and the
updated snesreader.dll in the same folder as the WIP. No profiling.

This fixes UPS patching, and it also modifies snesreader to generate
the XML map separately, so that the map can be generated post-
patching.
The new enum classes weren't attaching properly to the config file, so
the input settings, expansion port and region settings are saved
again.
It also converts the S-SMP timers back to unsigned integers instead of
using floating point, no accuracy improvement but much more in line
with hardware.
Lastly, it makes the div register shift left 16 places and pre-shifts
on divide, which is just for aesthetics.

And I'll wait on your tests, FitzRoy. I really hope that Big Run
Jaleco Rally is correct, because I don't have the first idea how to
debug that one. Speedy I can probably handle.
2010-03-17 12:58:18 +00:00
byuu
57f903630a Update to bsnes v062r04 release.
I suppose I should start calling these nightlies, heh. blargg went ahead and verified every last possible edge case with regards to the S-CPU MUL / DIV registers. It uncovered a few errors in my implementation, which have since been corrected. The design used now should be a direct reflection of the hardware implementation: no actual multiplication, no actual division, and no variable-length bit-shifting.
We also spent about eight hours straight hammering away at the S-SMP test register. We have a partial understanding of TEST.d3 and TEST.d0, and a complete understanding of the other six bits. All of this has been implemented as well.
Lastly, snesreader gets a tiny update to fix Test Drive II, which broke due to a slight regression when porting the mapping code to XML.
2010-03-15 23:24:58 +00:00
byuu
9329de0a8d Update to bsnes v062r03 release.
blargg and I sat around for a good 8+ hours today hacking away at the
S-SMP Pandora's Box: the TEST register. What better way to spend Pi
Day, right?

We came up with the following tests:
http://byuusan.kuro-hitsuji.net/blargg_2010-03-14.zip

First, controller_strobebehavior.smc improves emulation of $4016. When
the joypad strobe latch = 1, reading $4016 returns the current value
of the B button. As in, you can keep reading it over and over. It
won't increment the shift register, and it will keep telling you the
actual current state of the button. This is very much like the NES
behavior. One more TODO in the S-CPU code taken care of.

Next, all kinds of S-SMP TEST register improvements. Turns out d7-d6
alone controls the actual S-SMP clock rate. 0 = 100%, 1 = 50%, 2 = 0%
(locks the S-SMP forever), 3 = 10%. Wild stuff, you can actually
permanently slow the S-SMP relative to the S-CPU.

d6-d5 is a timer tick control, but it actually uses d7-d4 overlaid.
The algorithm is fucking nuts, and is really my only contribution to
today's work. The rest was all blargg's research.

We had d2 wrong, it's not MMIO disable, it's RAM disable. As in,
disable read and write. Returns 0x5a on regular SNES, 0xff on mini-
SNES. 0x5a is not the S-SMP MDR. IPLROM is still readable when RAM is
disabled. d1 was correct, just RAM write disable. Can still write to
$f8 and $f9, of course. But it won't go through to RAM.

d3 and d0, we are still a little unsure on. The T0-T2 timers seem to
have a low and high phase, and if you strobe them you can force ticks
of stage 2 to happen, and you can disable them in such a manner than
stage 2 never ticks at all.

blargg is still uncovering all sorts of crazy things in $xB mode, so
emulation of these two bits is not perfect.

But overall we are leaps and bounds further now toward complete
emulation. I'd say we went from 10% to 80% with today's work. But
we'll have to see how deep the rabbit hole goes on d3+d0 first.

Current register map:

    case 0xf0: {  //TEST
    if(regs.p.p) break;  //writes only valid when P flag is clear

    status.clock_speed     = (data >> 6) & 3;  //100%, 50%, 0%, 10%
    status.timer_speed     = (data >> 4) & 3;  //100%, ...
    status.timers_enabled  = data & 0x08;
    status.ram_disabled    = data & 0x04;
    status.ram_writable    = data & 0x02;
    status.timers_disabled = data & 0x01;

    unsigned base = 1 + (1 << status.clock_speed);
    unsigned step = base + (15 >> (3 - status.timer_speed));
    status.timer_step = 1.0 / (3.0 / step);

    t0.sync_stage1();
    t1.sync_stage1();
    t2.sync_stage1();
    } break;


Fairly confident that no emulator prior to this WIP could pass any of
blargg's tests, so this is all brand new information. Fun stuff :)
2010-03-15 15:20:52 +00:00
byuu
989648c21c Update to bsnes v062 release.
Major accuracy improvements have happened over the past few days. They easily warrant a new beta release.
First, it turns out that every emulator to date; not only for the SNES, but for the Apple II GS as well, incorrectly computed ADC (add) and SBC (subtract) flags in BCD (binary-coded decimal) mode. At least fifteen years of emulating the 65816 processor, at least five known investigations into their behavior, and we all still had it wrong.
So I wrote some tests that dumped every possible combination of adc and sbc with every possible input and every possible flag, and recorded both the accumulator result and status flag register. From here, blargg figured out the underlying trick: the CPU was computing overflow before the top-nibble's BCD correction pass. With the routines rewritten, bsnes perfectly matches real hardware now.
Next, some background. The whole reason I got into SNES emulation was because I was tired of writing code that ran perfectly fine on emulators, but failed miserably on real hardware. The number one problem was emulators allowing video RAM to be written while the screen was being rendered. This single bug has broken dozens of fan translations and ROM hacks. Some have been updated to work around this bug, and many others are left in a permanently broken state (such as the translations of Dragon Quest I & II and Sailor Moon: Another Story, to name just two.) After asking emulator authors to fix this since 1997, I finally had enough in 2004 and started on bsnes. For this particular bug, I'm very happy to report that all but one SNES emulator now properly blocks these invalid accesses. Although sadly one still offers a configuration setting for backwards compatibility with these translations. What an ironic shame ... emulating an emulator. And in the process, sapping the motivation to ever go back and fix these 
titles to ever run on real hardware. But I digress ...
The second biggest problem that causes software created under emulation to break on real hardware has, without a doubt, been the hardware delays as the S-CPU computes MUL (multiplication) and DIV (division) results. To date, whenever you used this hardware functionality, emulators have immmediately furnished the correct results. But on real hardware, multiplication requires eight CPU cycles, and division requires sixteen. Each step computes one bit of the source operand and updates the results. Reading the output registers early thus provides the partially computed results.
This is obscure. It isn't well known, and many people writing software for the SNES probably aren't even aware of this limitation. Because of the partial computation results, outright delaying the computation would break many commercial software titles. But by not emulating the delay at all, we were causing a great disservice to anyone wishing to use an emulator for development purposes.
Now, once again, thanks to blargg's algorithm help, he has determined the underlying multiplication and division algorithms. Combined with my expertise of SNES analysis and hardware testing, I was able to determine when and how the ALU (arithmetic logic unit) stepped through each work cycle. Our work combined, bsnes now also perfectly emulates the hardware MUL and DIV delays.
Again, this isn't going to fix commercial software titles. They would have realized that they were reading back invalid MUL and DIV values, and fixed their code. This is for all of the software developed using emulators. This is an extension of my commitment to create a hardware emulator, and not a video game emulator.
We also verified that the S-PPU multiplication interface does indeed return instant results with no delay. So emulation of that interface was already correct.
I'm only labelling this release a beta because it hasn't been tested. But I'm fairly confident that it is stable, and I seriously recommend upgrading from v060 or prior releases. This is easily one of the last major pieces missing from emulation.
The last notable elements are: S-CPU auto joypad poll timing, S-CPUr1 HDMA crash detection, S-CPU<>S-SMP port ORing, S-SMP timer glitching, S-DSP mute pulse, and full cycle-level emulation of the S-PPU. With all of the aforementioned items, I will consider a v1.0 release of bsnes ;)
Lastly, I'll post this screenshot just for fun. When d4s translated Breath of Fire II to German, he added some code that relies on the incorrect emulation of the DIV register to detect emulators. With this emulated properly, you now see the following screen:
./sshots/bs_349.png
Sorry to spoil that, but the secret's already out, as the MESS team reported on it publicly already.
I intend to add pseudo-randomness support shortly, which should eliminate one of the last vectors possible to distinguish bsnes from real hardware :)
A million thanks to blargg for making this release possible.
2010-03-13 23:48:54 +00:00
byuu
0f0dcf9538 Update to bsnes v061r03 release.
This is probably the biggest accuracy fix in several years.

Thanks to the efforts of blargg and myself, bsnes is now the very
first emulator to properly emulate ALU multiplication delays. It's
100% bit-perfect.

Note that we don't yet know the underlying division algorithm. So in
this WIP, I just make it wait eight ticks before storing the results.
It _may_ cause some issues, but I wanted to get rid of the
status.alu_lock and config.alu_mul/div_delay garbage in advance.

I'm absolutely enthralled, I never thought I'd actually see this
emulated properly.
2010-03-13 15:40:21 +00:00
byuu
78e1a5b067 Update to bsnes v061r02 release.
Complete rewrite of adc + sbc opcodes, should fix:
- adc BCD overflow flag
- sbc BCD overflow flag
- sbc BCD invalid input value

Testing is appreciated, I believe Sim Earth is probably the most
likely to observe any difference.
2010-03-13 15:40:21 +00:00
byuu
79404ec523 Update to bsnes v061r01 release.
Found the cause of the issue breaking SuperFX games after loading SA-1 games. Seems the XML mapping tree wasn't being cleared. It's also not a good idea to use bsnes/ as the folder name when the Makefile generates a binary by the same name in the same directory, so back to src/ for the main emulator it is.
With those fixes, this release should be fully stable; but again my intentions are to keep v060 as the stable release for a while.
Nonetheless, you can grab the new beta at Google Code. It should be the last update for at least a few weeks.
2010-03-08 21:04:20 +00:00
1114 changed files with 50996 additions and 87977 deletions

91
Makefile Normal file
View File

@@ -0,0 +1,91 @@
include nall/Makefile
snes := asnes
ui := qt
# compiler
c := $(compiler) -std=gnu99
cpp := $(subst cc,++,$(compiler)) -std=gnu++0x
flags := -O3 -fomit-frame-pointer -I. -I$(snes)
link :=
objects :=
# profile-guided instrumentation
# flags += -fprofile-generate
# link += -lgcov
# profile-guided optimization
# flags += -fprofile-use
# platform
ifeq ($(platform),x)
link += -s -ldl -lX11 -lXext
else ifeq ($(platform),osx)
else ifeq ($(platform),win)
link += -mwindows
# link += -mconsole
link += -mthreads -s -luuid -lkernel32 -luser32 -lgdi32 -lshell32
link += -enable-stdcall-fixup -Wl,-enable-auto-import -Wl,-enable-runtime-pseudo-reloc
else
unknown_platform: help;
endif
# implicit rules
compile = \
$(strip \
$(if $(filter %.c,$<), \
$(c) $(flags) $1 -c $< -o $@, \
$(if $(filter %.cpp,$<), \
$(cpp) $(flags) $1 -c $< -o $@ \
) \
) \
)
%.o: $<; $(call compile)
all: build;
include $(snes)/Makefile
include $(ui)/Makefile
objects := $(patsubst %,obj/%.o,$(objects))
# targets
build: ui_build $(objects)
ifeq ($(platform),osx)
test -d ../bsnes.app || mkdir -p ../bsnes.app/Contents/MacOS
$(strip $(cpp) -o ../bsnes.app/Contents/MacOS/bsnes $(objects) $(link))
else
$(strip $(cpp) -o out/$(snes) $(objects) $(link))
endif
install:
ifeq ($(platform),x)
install -D -m 755 ../bsnes $(DESTDIR)$(prefix)/bin/bsnes
install -D -m 644 data/bsnes.png $(DESTDIR)$(prefix)/share/pixmaps/bsnes.png
install -D -m 644 data/bsnes.desktop $(DESTDIR)$(prefix)/share/applications/bsnes.desktop
endif
uninstall:
ifeq ($(platform),x)
rm $(DESTDIR)$(prefix)/bin/bsnes
rm $(DESTDIR)$(prefix)/share/pixmaps/bsnes.png
rm $(DESTDIR)$(prefix)/share/applications/bsnes.desktop
endif
clean: ui_clean
-@$(call delete,obj/*.o)
-@$(call delete,obj/*.a)
-@$(call delete,obj/*.so)
-@$(call delete,obj/*.dylib)
-@$(call delete,obj/*.dll)
-@$(call delete,*.res)
-@$(call delete,*.pgd)
-@$(call delete,*.pgc)
-@$(call delete,*.ilk)
-@$(call delete,*.pdb)
-@$(call delete,*.manifest)
archive-all:
tar -cjf snes-`date +%Y%m%d`.tar.bz2 asnes bsnes libco nall obj out qt ruby Makefile sync.sh
help:;

Binary file not shown.

Binary file not shown.

77
asnes/Makefile Normal file
View File

@@ -0,0 +1,77 @@
snes_objects := libco
snes_objects += snes-system
snes_objects += snes-cartridge snes-cheat
snes_objects += snes-memory snes-cpucore snes-cpu snes-smpcore snes-smp snes-dsp snes-ppu
snes_objects += snes-supergameboy snes-superfx snes-sa1
snes_objects += snes-bsx snes-srtc snes-sdd1 snes-spc7110
snes_objects += snes-cx4 snes-dsp1 snes-dsp2 snes-dsp3 snes-dsp4
snes_objects += snes-obc1 snes-st0010 snes-st0011 snes-st0018
snes_objects += snes-msu1 snes-serial
objects += $(snes_objects)
obj/libco.o : libco/libco.c libco/*
obj/libsnes.o: $(snes)/libsnes/libsnes.cpp $(snes)/libsnes/*
obj/snes-system.o : $(snes)/system/system.cpp $(call rwildcard,$(snes)/system/) $(call rwildcard,$(snes)/video/)
obj/snes-memory.o : $(snes)/memory/memory.cpp $(snes)/memory/*
obj/snes-cpucore.o : $(snes)/cpu/core/core.cpp $(call rwildcard,$(snes)/cpu/core/)
obj/snes-cpu.o : $(snes)/cpu/cpu.cpp $(snes)/cpu/*
obj/snes-smpcore.o : $(snes)/smp/core/core.cpp $(call rwildcard,$(snes)/smp/core/)
obj/snes-smp.o : $(snes)/smp/smp.cpp $(snes)/smp/*
obj/snes-dsp.o : $(snes)/dsp/dsp.cpp $(snes)/dsp/*
obj/snes-ppu.o : $(snes)/ppu/ppu.cpp $(snes)/ppu/*
obj/snes-cartridge.o: $(snes)/cartridge/cartridge.cpp $(snes)/cartridge/*
obj/snes-cheat.o : $(snes)/cheat/cheat.cpp $(snes)/cheat/*
obj/snes-supergameboy.o: $(snes)/chip/supergameboy/supergameboy.cpp $(call rwildcard,$(snes)/chip/supergameboy/)
obj/snes-superfx.o : $(snes)/chip/superfx/superfx.cpp $(call rwildcard,$(snes)/chip/superfx/)
obj/snes-sa1.o : $(snes)/chip/sa1/sa1.cpp $(call rwildcard,$(snes)/chip/sa1/)
obj/snes-bsx.o : $(snes)/chip/bsx/bsx.cpp $(snes)/chip/bsx/*
obj/snes-srtc.o : $(snes)/chip/srtc/srtc.cpp $(snes)/chip/srtc/*
obj/snes-sdd1.o : $(snes)/chip/sdd1/sdd1.cpp $(snes)/chip/sdd1/*
obj/snes-spc7110.o : $(snes)/chip/spc7110/spc7110.cpp $(snes)/chip/spc7110/*
obj/snes-cx4.o : $(snes)/chip/cx4/cx4.cpp $(snes)/chip/cx4/*
obj/snes-dsp1.o : $(snes)/chip/dsp1/dsp1.cpp $(snes)/chip/dsp1/*
obj/snes-dsp2.o : $(snes)/chip/dsp2/dsp2.cpp $(snes)/chip/dsp2/*
obj/snes-dsp3.o : $(snes)/chip/dsp3/dsp3.cpp $(snes)/chip/dsp3/*
obj/snes-dsp4.o : $(snes)/chip/dsp4/dsp4.cpp $(snes)/chip/dsp4/*
obj/snes-obc1.o : $(snes)/chip/obc1/obc1.cpp $(snes)/chip/obc1/*
obj/snes-st0010.o : $(snes)/chip/st0010/st0010.cpp $(snes)/chip/st0010/*
obj/snes-st0011.o : $(snes)/chip/st0011/st0011.cpp $(snes)/chip/st0011/*
obj/snes-st0018.o : $(snes)/chip/st0018/st0018.cpp $(snes)/chip/st0018/*
obj/snes-msu1.o : $(snes)/chip/msu1/msu1.cpp $(snes)/chip/msu1/*
obj/snes-serial.o : $(snes)/chip/serial/serial.cpp $(snes)/chip/serial/*
###########
# library #
###########
snes_objects := $(patsubst %,obj/%.o,$(snes_objects))
library: $(snes_objects) obj/libsnes.o
ifeq ($(platform),x)
ar rcs obj/libsnes.a $(snes_objects) obj/libsnes.o
$(cpp) -o obj/libsnes.so -shared -Wl,-soname,libsnes.so.1 $(snes_objects) obj/libsnes.o
else ifeq ($(platform),osx)
ar rcs obj/libsnes.a $(snes_objects) obj/libsnes.o
$(cpp) -o obj/libsnes.dylib -install_name @executable_path/../Libraries/libsnes.dylib -shared -dynamiclib $(snes_objects) obj/libsnes.o
else ifeq ($(platform),win)
$(cpp) -o obj/snes.dll -shared -Wl,--out-implib,libsnes.a $(snes_objects) obj/libsnes.o
endif
library-install:
ifeq ($(platform),x)
install -D -m 755 obj/libsnes.a $(DESTDIR)$(prefix)/lib/libsnes.a
install -D -m 755 obj/libsnes.so $(DESTDIR)$(prefix)/lib/libsnes.so
ldconfig -n $(DESTDIR)$(prefix)/lib
else ifeq ($(platform),osx)
cp obj/libsnes.dylib /usr/local/lib/libsnes.dylib
endif
library-uninstall:
ifeq ($(platform),x)
rm $(DESTDIR)$(prefix)/lib/libsnes.a
rm $(DESTDIR)$(prefix)/lib/libsnes.so
else ifeq ($(platform),osx)
rm /usr/local/lib/libsnes.dylib
endif

View File

@@ -14,12 +14,7 @@ void Audio::coprocessor_enable(bool state) {
void Audio::coprocessor_frequency(double input_frequency) {
double output_frequency;
if(system.region() == System::Region::NTSC) {
output_frequency = config.smp.ntsc_clock_rate / 768.0;
} else /* (system.region() == System::PAL) */ {
output_frequency = config.smp.pal_clock_rate / 768.0;
}
output_frequency = system.apu_frequency() / 768.0;
r_step = input_frequency / output_frequency;
r_frac = 0;
}

View File

@@ -0,0 +1,144 @@
#include <snes.hpp>
#include <nall/crc32.hpp>
#include <nall/sha256.hpp>
#define CARTRIDGE_CPP
namespace SNES {
#include "xml.cpp"
#include "serialization.cpp"
namespace memory {
MappedRAM cartrom, cartram, cartrtc;
MappedRAM bsxflash, bsxram, bsxpram;
MappedRAM stArom, stAram;
MappedRAM stBrom, stBram;
MappedRAM gbrom, gbram, gbrtc;
};
Cartridge cartridge;
void Cartridge::load(Mode cartridge_mode, const lstring &xml_list) {
mode = cartridge_mode;
region = Region::NTSC;
ram_size = 0;
spc7110_data_rom_offset = 0x100000;
supergameboy_version = SuperGameBoyVersion::Version1;
supergameboy_ram_size = 0;
supergameboy_rtc_size = 0;
serial_baud_rate = 57600;
has_bsx_slot = false;
has_superfx = false;
has_sa1 = false;
has_srtc = false;
has_sdd1 = false;
has_spc7110 = false;
has_spc7110rtc = false;
has_cx4 = false;
has_dsp1 = false;
has_dsp2 = false;
has_dsp3 = false;
has_dsp4 = false;
has_obc1 = false;
has_st0010 = false;
has_st0011 = false;
has_st0018 = false;
has_msu1 = false;
has_serial = false;
parse_xml(xml_list);
if(ram_size > 0) {
memory::cartram.map(allocate<uint8_t>(ram_size, 0xff), ram_size);
}
if(has_srtc || has_spc7110rtc) {
memory::cartrtc.map(allocate<uint8_t>(20, 0xff), 20);
}
if(mode == Mode::Bsx) {
memory::bsxram.map (allocate<uint8_t>( 32 * 1024, 0xff), 32 * 1024);
memory::bsxpram.map(allocate<uint8_t>(512 * 1024, 0xff), 512 * 1024);
}
if(mode == Mode::SufamiTurbo) {
if(memory::stArom.data()) memory::stAram.map(allocate<uint8_t>(128 * 1024, 0xff), 128 * 1024);
if(memory::stBrom.data()) memory::stBram.map(allocate<uint8_t>(128 * 1024, 0xff), 128 * 1024);
}
if(mode == Mode::SuperGameBoy) {
if(memory::gbrom.data()) {
if(supergameboy_ram_size) memory::gbram.map(allocate<uint8_t>(supergameboy_ram_size, 0xff), supergameboy_ram_size);
if(supergameboy_rtc_size) memory::gbrtc.map(allocate<uint8_t>(supergameboy_rtc_size, 0x00), supergameboy_rtc_size);
}
}
memory::cartrom.write_protect(true);
memory::cartram.write_protect(false);
memory::cartrtc.write_protect(false);
memory::bsxflash.write_protect(true);
memory::bsxram.write_protect(false);
memory::bsxpram.write_protect(false);
memory::stArom.write_protect(true);
memory::stAram.write_protect(false);
memory::stBrom.write_protect(true);
memory::stBram.write_protect(false);
memory::gbrom.write_protect(true);
memory::gbram.write_protect(false);
memory::gbrtc.write_protect(false);
unsigned checksum = ~0; foreach(n, memory::cartrom ) checksum = crc32_adjust(checksum, n);
if(memory::bsxflash.size() != 0 && memory::bsxflash.size() != ~0) foreach(n, memory::bsxflash) checksum = crc32_adjust(checksum, n);
if(memory::stArom.size() != 0 && memory::stArom.size() != ~0) foreach(n, memory::stArom ) checksum = crc32_adjust(checksum, n);
if(memory::stBrom.size() != 0 && memory::stBrom.size() != ~0) foreach(n, memory::stBrom ) checksum = crc32_adjust(checksum, n);
if(memory::gbrom.size() != 0 && memory::gbrom.size() != ~0) foreach(n, memory::gbrom ) checksum = crc32_adjust(checksum, n);
crc32 = ~checksum;
sha256_ctx sha;
uint8_t shahash[32];
sha256_init(&sha);
sha256_chunk(&sha, memory::cartrom.data(), memory::cartrom.size());
sha256_final(&sha);
sha256_hash(&sha, shahash);
string hash;
foreach(n, shahash) hash << strhex<2>(n);
sha256 = hash;
bus.load_cart();
system.serialize_init();
loaded = true;
}
void Cartridge::unload() {
memory::cartrom.reset();
memory::cartram.reset();
memory::cartrtc.reset();
memory::bsxflash.reset();
memory::bsxram.reset();
memory::bsxpram.reset();
memory::stArom.reset();
memory::stAram.reset();
memory::stBrom.reset();
memory::stBram.reset();
memory::gbrom.reset();
memory::gbram.reset();
memory::gbrtc.reset();
if(loaded == false) return;
bus.unload_cart();
loaded = false;
}
Cartridge::Cartridge() {
loaded = false;
unload();
}
Cartridge::~Cartridge() {
unload();
}
}

View File

@@ -0,0 +1,118 @@
class Cartridge : property<Cartridge> {
public:
enum class Mode : unsigned {
Normal,
BsxSlotted,
Bsx,
SufamiTurbo,
SuperGameBoy,
};
enum class Region : unsigned {
NTSC,
PAL,
};
enum class SuperGameBoyVersion : unsigned {
Version1,
Version2,
};
//assigned externally to point to file-system datafiles (msu1 and serial)
//example: "/path/to/filename.sfc" would set this to "/path/to/filename"
readwrite<string> basename;
readonly<bool> loaded;
readonly<unsigned> crc32;
readonly<string> sha256;
readonly<Mode> mode;
readonly<Region> region;
readonly<unsigned> ram_size;
readonly<unsigned> spc7110_data_rom_offset;
readonly<SuperGameBoyVersion> supergameboy_version;
readonly<unsigned> supergameboy_ram_size;
readonly<unsigned> supergameboy_rtc_size;
readonly<unsigned> serial_baud_rate;
readonly<bool> has_bsx_slot;
readonly<bool> has_superfx;
readonly<bool> has_sa1;
readonly<bool> has_srtc;
readonly<bool> has_sdd1;
readonly<bool> has_spc7110;
readonly<bool> has_spc7110rtc;
readonly<bool> has_cx4;
readonly<bool> has_dsp1;
readonly<bool> has_dsp2;
readonly<bool> has_dsp3;
readonly<bool> has_dsp4;
readonly<bool> has_obc1;
readonly<bool> has_st0010;
readonly<bool> has_st0011;
readonly<bool> has_st0018;
readonly<bool> has_msu1;
readonly<bool> has_serial;
struct Mapping {
Memory *memory;
MMIO *mmio;
Bus::MapMode mode;
unsigned banklo;
unsigned bankhi;
unsigned addrlo;
unsigned addrhi;
unsigned offset;
unsigned size;
Mapping();
Mapping(Memory&);
Mapping(MMIO&);
};
array<Mapping> mapping;
void load(Mode, const lstring&);
void unload();
void serialize(serializer&);
Cartridge();
~Cartridge();
private:
void parse_xml(const lstring&);
void parse_xml_cartridge(const char*);
void parse_xml_bsx(const char*);
void parse_xml_sufami_turbo(const char*, bool);
void parse_xml_gameboy(const char*);
void xml_parse_rom(xml_element&);
void xml_parse_ram(xml_element&);
void xml_parse_superfx(xml_element&);
void xml_parse_sa1(xml_element&);
void xml_parse_bsx(xml_element&);
void xml_parse_sufamiturbo(xml_element&);
void xml_parse_supergameboy(xml_element&);
void xml_parse_srtc(xml_element&);
void xml_parse_sdd1(xml_element&);
void xml_parse_spc7110(xml_element&);
void xml_parse_cx4(xml_element&);
void xml_parse_necdsp(xml_element&);
void xml_parse_obc1(xml_element&);
void xml_parse_setadsp(xml_element&);
void xml_parse_setarisc(xml_element&);
void xml_parse_msu1(xml_element&);
void xml_parse_serial(xml_element&);
void xml_parse_address(Mapping&, const string&);
void xml_parse_mode(Mapping&, const string&);
};
namespace memory {
extern MappedRAM cartrom, cartram, cartrtc;
extern MappedRAM bsxflash, bsxram, bsxpram;
extern MappedRAM stArom, stAram;
extern MappedRAM stBrom, stBram;
extern MappedRAM gbrom, gbram, gbrtc;
};
extern Cartridge cartridge;

View File

@@ -0,0 +1,37 @@
#ifdef CARTRIDGE_CPP
void Cartridge::serialize(serializer &s) {
if(memory::cartram.size() != 0 && memory::cartram.size() != ~0) {
s.array(memory::cartram.data(), memory::cartram.size());
}
if(memory::cartrtc.size() != 0 && memory::cartrtc.size() != ~0) {
s.array(memory::cartrtc.data(), memory::cartrtc.size());
}
if(memory::bsxram.size() != 0 && memory::bsxram.size() != ~0) {
s.array(memory::bsxram.data(), memory::bsxram.size());
}
if(memory::bsxpram.size() != 0 && memory::bsxpram.size() != ~0) {
s.array(memory::bsxpram.data(), memory::bsxpram.size());
}
if(memory::stAram.size() != 0 && memory::stAram.size() != ~0) {
s.array(memory::stAram.data(), memory::stAram.size());
}
if(memory::stBram.size() != 0 && memory::stBram.size() != ~0) {
s.array(memory::stBram.data(), memory::stBram.size());
}
if(memory::gbram.size() != 0 && memory::gbram.size() != ~0) {
s.array(memory::gbram.data(), memory::gbram.size());
}
if(memory::gbrtc.size() != 0 && memory::gbrtc.size() != ~0) {
s.array(memory::gbrtc.data(), memory::gbrtc.size());
}
}
#endif

671
asnes/cartridge/xml.cpp Normal file
View File

@@ -0,0 +1,671 @@
#ifdef CARTRIDGE_CPP
void Cartridge::parse_xml(const lstring &list) {
mapping.reset();
parse_xml_cartridge(list[0]);
if(mode == Mode::BsxSlotted) {
parse_xml_bsx(list[1]);
} else if(mode == Mode::Bsx) {
parse_xml_bsx(list[1]);
} else if(mode == Mode::SufamiTurbo) {
parse_xml_sufami_turbo(list[1], 0);
parse_xml_sufami_turbo(list[2], 1);
} else if(mode == Mode::SuperGameBoy) {
parse_xml_gameboy(list[1]);
}
}
void Cartridge::parse_xml_cartridge(const char *data) {
xml_element document = xml_parse(data);
if(document.element.size() == 0) return;
foreach(head, document.element) {
if(head.name == "cartridge") {
foreach(attr, head.attribute) {
if(attr.name == "region") {
if(attr.content == "NTSC") region = Region::NTSC;
if(attr.content == "PAL") region = Region::PAL;
}
}
foreach(node, head.element) {
if(node.name == "rom") xml_parse_rom(node);
if(node.name == "ram") xml_parse_ram(node);
if(node.name == "superfx") xml_parse_superfx(node);
if(node.name == "sa1") xml_parse_sa1(node);
if(node.name == "bsx") xml_parse_bsx(node);
if(node.name == "sufamiturbo") xml_parse_sufamiturbo(node);
if(node.name == "supergameboy") xml_parse_supergameboy(node);
if(node.name == "srtc") xml_parse_srtc(node);
if(node.name == "sdd1") xml_parse_sdd1(node);
if(node.name == "spc7110") xml_parse_spc7110(node);
if(node.name == "cx4") xml_parse_cx4(node);
if(node.name == "necdsp") xml_parse_necdsp(node);
if(node.name == "obc1") xml_parse_obc1(node);
if(node.name == "setadsp") xml_parse_setadsp(node);
if(node.name == "setarisc") xml_parse_setarisc(node);
if(node.name == "msu1") xml_parse_msu1(node);
if(node.name == "serial") xml_parse_serial(node);
}
}
}
}
void Cartridge::parse_xml_bsx(const char *data) {
}
void Cartridge::parse_xml_sufami_turbo(const char *data, bool slot) {
}
void Cartridge::parse_xml_gameboy(const char *data) {
xml_element document = xml_parse(data);
if(document.element.size() == 0) return;
foreach(head, document.element) {
if(head.name == "cartridge") {
foreach(attr, head.attribute) {
if(attr.name == "rtc") {
supergameboy_rtc_size = (attr.content == "true") ? 4 : 0;
}
}
foreach(leaf, head.element) {
if(leaf.name == "ram") {
foreach(attr, leaf.attribute) {
if(attr.name == "size") {
supergameboy_ram_size = strhex(attr.content);
}
}
}
}
}
}
}
void Cartridge::xml_parse_rom(xml_element &root) {
foreach(leaf, root.element) {
if(leaf.name == "map") {
Mapping m(memory::cartrom);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
mapping.append(m);
}
}
}
void Cartridge::xml_parse_ram(xml_element &root) {
foreach(attr, root.attribute) {
if(attr.name == "size") ram_size = strhex(attr.content);
}
foreach(leaf, root.element) {
if(leaf.name == "map") {
Mapping m(memory::cartram);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
mapping.append(m);
}
}
}
void Cartridge::xml_parse_superfx(xml_element &root) {
has_superfx = true;
foreach(node, root.element) {
if(node.name == "rom") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(memory::fxrom);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "ram") {
foreach(attr, node.attribute) {
if(attr.name == "size") ram_size = strhex(attr.content);
}
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(memory::fxram);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(superfx);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_sa1(xml_element &root) {
has_sa1 = true;
foreach(node, root.element) {
if(node.name == "rom") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(memory::vsprom);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "iram") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(memory::cpuiram);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "bwram") {
foreach(attr, node.attribute) {
if(attr.name == "size") ram_size = strhex(attr.content);
}
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(memory::cc1bwram);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(sa1);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_bsx(xml_element &root) {
if(mode != Mode::BsxSlotted && mode != Mode::Bsx) return;
foreach(node, root.element) {
if(node.name == "slot") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(memory::bsxflash);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(bsxcart);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_sufamiturbo(xml_element &root) {
if(mode != Mode::SufamiTurbo) return;
foreach(node, root.element) {
if(node.name == "slot") {
bool slotid = 0;
foreach(attr, node.attribute) {
if(attr.name == "id") {
if(attr.content == "A") slotid = 0;
if(attr.content == "B") slotid = 1;
}
}
foreach(slot, node.element) {
if(slot.name == "rom") {
foreach(leaf, slot.element) {
if(leaf.name == "map") {
Mapping m(slotid == 0 ? memory::stArom : memory::stBrom);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
if(m.memory->size() > 0) mapping.append(m);
}
}
} else if(slot.name == "ram") {
foreach(leaf, slot.element) {
if(leaf.name == "map") {
Mapping m(slotid == 0 ? memory::stAram : memory::stBram);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
if(m.memory->size() > 0) mapping.append(m);
}
}
}
}
}
}
}
void Cartridge::xml_parse_supergameboy(xml_element &root) {
if(mode != Mode::SuperGameBoy) return;
foreach(attr, root.attribute) {
if(attr.name == "revision") {
if(attr.content == "1") supergameboy_version = SuperGameBoyVersion::Version1;
if(attr.content == "2") supergameboy_version = SuperGameBoyVersion::Version2;
}
}
foreach(node, root.element) {
if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m((Memory&)supergameboy);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_srtc(xml_element &root) {
has_srtc = true;
foreach(node, root.element) {
if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(srtc);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_sdd1(xml_element &root) {
has_sdd1 = true;
foreach(node, root.element) {
if(node.name == "mcu") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m((Memory&)sdd1);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m((MMIO&)sdd1);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_spc7110(xml_element &root) {
has_spc7110 = true;
foreach(node, root.element) {
if(node.name == "dcu") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(spc7110dcu);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "mcu") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(spc7110mcu);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "offset") spc7110_data_rom_offset = strhex(attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(spc7110);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "ram") {
foreach(attr, node.attribute) {
if(attr.name == "size") ram_size = strhex(attr.content);
}
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(spc7110ram);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
if(attr.name == "mode") xml_parse_mode(m, attr.content);
if(attr.name == "offset") m.offset = strhex(attr.content);
if(attr.name == "size") m.size = strhex(attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "rtc") {
has_spc7110rtc = true;
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(spc7110);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_cx4(xml_element &root) {
has_cx4 = true;
foreach(node, root.element) {
if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(cx4);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_necdsp(xml_element &root) {
unsigned program = 0;
foreach(attr, root.attribute) {
if(attr.name == "program") {
if(attr.content == "DSP-1" || attr.content == "DSP-1A" || attr.content == "DSP-1B") {
program = 1;
has_dsp1 = true;
} else if(attr.content == "DSP-2") {
program = 2;
has_dsp2 = true;
} else if(attr.content == "DSP-3") {
program = 3;
has_dsp3 = true;
} else if(attr.content == "DSP-4") {
program = 4;
has_dsp4 = true;
}
}
}
Memory *dr[5] = { 0, &dsp1dr, &dsp2dr, &dsp3, &dsp4 };
Memory *sr[5] = { 0, &dsp1sr, &dsp2sr, &dsp3, &dsp4 };
foreach(node, root.element) {
if(node.name == "dr" && dr[program]) {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(*dr[program]);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
} else if(node.name == "sr" && sr[program]) {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(*sr[program]);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_obc1(xml_element &root) {
has_obc1 = true;
foreach(node, root.element) {
if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(obc1);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_setadsp(xml_element &root) {
unsigned program = 0;
foreach(attr, root.attribute) {
if(attr.name == "program") {
if(attr.content == "ST-0010") {
program = 1;
has_st0010 = true;
} else if(attr.content == "ST-0011") {
program = 2;
has_st0011 = true;
}
}
}
Memory *map[3] = { 0, &st0010, 0 };
foreach(node, root.element) {
if(node.name == "mmio" && map[program]) {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(*map[program]);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_setarisc(xml_element &root) {
unsigned program = 0;
foreach(attr, root.attribute) {
if(attr.name == "program") {
if(attr.content == "ST-0018") {
program = 1;
has_st0018 = true;
}
}
}
MMIO *map[2] = { 0, &st0018 };
foreach(node, root.element) {
if(node.name == "mmio" && map[program]) {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(*map[program]);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_msu1(xml_element &root) {
has_msu1 = true;
foreach(node, root.element) {
if(node.name == "mmio") {
foreach(leaf, node.element) {
if(leaf.name == "map") {
Mapping m(msu1);
foreach(attr, leaf.attribute) {
if(attr.name == "address") xml_parse_address(m, attr.content);
}
mapping.append(m);
}
}
}
}
}
void Cartridge::xml_parse_serial(xml_element &root) {
has_serial = true;
foreach(attr, root.attribute) {
if(attr.name == "baud") {
serial_baud_rate = strunsigned(attr.content);
}
}
}
void Cartridge::xml_parse_address(Mapping &m, const string &data) {
lstring part;
part.split(":", data);
if(part.size() != 2) return;
lstring subpart;
subpart.split("-", part[0]);
if(subpart.size() == 1) {
m.banklo = strhex(subpart[0]);
m.bankhi = m.banklo;
} else if(subpart.size() == 2) {
m.banklo = strhex(subpart[0]);
m.bankhi = strhex(subpart[1]);
}
subpart.split("-", part[1]);
if(subpart.size() == 1) {
m.addrlo = strhex(subpart[0]);
m.addrhi = m.addrlo;
} else if(subpart.size() == 2) {
m.addrlo = strhex(subpart[0]);
m.addrhi = strhex(subpart[1]);
}
}
void Cartridge::xml_parse_mode(Mapping &m, const string& data) {
if(data == "direct") m.mode = Bus::MapMode::Direct;
else if(data == "linear") m.mode = Bus::MapMode::Linear;
else if(data == "shadow") m.mode = Bus::MapMode::Shadow;
}
Cartridge::Mapping::Mapping() {
memory = 0;
mmio = 0;
mode = Bus::MapMode::Direct;
banklo = bankhi = addrlo = addrhi = offset = size = 0;
}
Cartridge::Mapping::Mapping(Memory &memory_) {
memory = &memory_;
mmio = 0;
mode = Bus::MapMode::Direct;
banklo = bankhi = addrlo = addrhi = offset = size = 0;
}
Cartridge::Mapping::Mapping(MMIO &mmio_) {
memory = 0;
mmio = &mmio_;
mode = Bus::MapMode::Direct;
banklo = bankhi = addrlo = addrhi = offset = size = 0;
}
#endif

View File

@@ -0,0 +1,2 @@
bool Cheat::active() const { return cheat_enabled; }
bool Cheat::exists(unsigned addr) const { return bitmask[addr >> 3] & 1 << (addr & 7); }

194
asnes/cheat/cheat.cpp Normal file
View File

@@ -0,0 +1,194 @@
#include <snes.hpp>
#define CHEAT_CPP
namespace SNES {
Cheat cheat;
bool Cheat::enabled() const {
return system_enabled;
}
void Cheat::enable(bool state) {
system_enabled = state;
cheat_enabled = system_enabled && code_enabled;
}
void Cheat::synchronize() {
memset(bitmask, 0x00, sizeof bitmask);
code_enabled = false;
for(unsigned i = 0; i < size(); i++) {
const CheatCode &code = operator[](i);
if(code.enabled == false) continue;
for(unsigned n = 0; n < code.addr.size(); n++) {
code_enabled = true;
unsigned addr = mirror(code.addr[n]);
bitmask[addr >> 3] |= 1 << (addr & 7);
if((addr & 0xffe000) == 0x7e0000) {
//mirror $7e:0000-1fff to $00-3f|80-bf:0000-1fff
unsigned mirroraddr;
for(unsigned x = 0; x <= 0x3f; x++) {
mirroraddr = ((0x00 + x) << 16) + (addr & 0x1fff);
bitmask[mirroraddr >> 3] |= 1 << (mirroraddr & 7);
mirroraddr = ((0x80 + x) << 16) + (addr & 0x1fff);
bitmask[mirroraddr >> 3] |= 1 << (mirroraddr & 7);
}
}
}
}
cheat_enabled = system_enabled && code_enabled;
}
bool Cheat::read(unsigned addr, uint8 &data) const {
addr = mirror(addr);
for(unsigned i = 0; i < size(); i++) {
const CheatCode &code = operator[](i);
if(code.enabled == false) continue;
for(unsigned n = 0; n < code.addr.size(); n++) {
if(addr == mirror(code.addr[n])) {
data = code.data[n];
return true;
}
}
}
return false;
}
Cheat::Cheat() {
system_enabled = true;
synchronize();
}
//===============
//encode / decode
//===============
bool Cheat::decode(const char *s, unsigned &addr, uint8 &data, Type &type) {
string t = s;
t.lower();
#define ischr(n) ((n >= '0' && n <= '9') || (n >= 'a' && n <= 'f'))
if(strlen(t) == 8 || (strlen(t) == 9 && t[6] == ':')) {
//strip ':'
if(strlen(t) == 9 && t[6] == ':') t = string() << substr(t, 0, 6) << substr(t, 7);
//validate input
for(unsigned i = 0; i < 8; i++) if(!ischr(t[i])) return false;
type = Type::ProActionReplay;
unsigned r = strhex((const char*)t);
addr = r >> 8;
data = r & 0xff;
return true;
} else if(strlen(t) == 9 && t[4] == '-') {
//strip '-'
t = string() << substr(t, 0, 4) << substr(t, 5);
//validate input
for(unsigned i = 0; i < 8; i++) if(!ischr(t[i])) return false;
type = Type::GameGenie;
t.transform("df4709156bc8a23e", "0123456789abcdef");
unsigned r = strhex((const char*)t);
//8421 8421 8421 8421 8421 8421
//abcd efgh ijkl mnop qrst uvwx
//ijkl qrst opab cduv wxef ghmn
addr = (!!(r & 0x002000) << 23) | (!!(r & 0x001000) << 22)
| (!!(r & 0x000800) << 21) | (!!(r & 0x000400) << 20)
| (!!(r & 0x000020) << 19) | (!!(r & 0x000010) << 18)
| (!!(r & 0x000008) << 17) | (!!(r & 0x000004) << 16)
| (!!(r & 0x800000) << 15) | (!!(r & 0x400000) << 14)
| (!!(r & 0x200000) << 13) | (!!(r & 0x100000) << 12)
| (!!(r & 0x000002) << 11) | (!!(r & 0x000001) << 10)
| (!!(r & 0x008000) << 9) | (!!(r & 0x004000) << 8)
| (!!(r & 0x080000) << 7) | (!!(r & 0x040000) << 6)
| (!!(r & 0x020000) << 5) | (!!(r & 0x010000) << 4)
| (!!(r & 0x000200) << 3) | (!!(r & 0x000100) << 2)
| (!!(r & 0x000080) << 1) | (!!(r & 0x000040) << 0);
data = r >> 24;
return true;
} else {
return false;
}
#undef ischr
}
bool Cheat::encode(string &s, unsigned addr, uint8 data, Type type) {
char t[16];
if(type == Type::ProActionReplay) {
s = string(strhex<6>(addr), strhex<2>(data));
return true;
} else if(type == Type::GameGenie) {
unsigned r = addr;
addr = (!!(r & 0x008000) << 23) | (!!(r & 0x004000) << 22)
| (!!(r & 0x002000) << 21) | (!!(r & 0x001000) << 20)
| (!!(r & 0x000080) << 19) | (!!(r & 0x000040) << 18)
| (!!(r & 0x000020) << 17) | (!!(r & 0x000010) << 16)
| (!!(r & 0x000200) << 15) | (!!(r & 0x000100) << 14)
| (!!(r & 0x800000) << 13) | (!!(r & 0x400000) << 12)
| (!!(r & 0x200000) << 11) | (!!(r & 0x100000) << 10)
| (!!(r & 0x000008) << 9) | (!!(r & 0x000004) << 8)
| (!!(r & 0x000002) << 7) | (!!(r & 0x000001) << 6)
| (!!(r & 0x080000) << 5) | (!!(r & 0x040000) << 4)
| (!!(r & 0x020000) << 3) | (!!(r & 0x010000) << 2)
| (!!(r & 0x000800) << 1) | (!!(r & 0x000400) << 0);
s = string(strhex<2>(data), strhex<2>(addr >> 16), "-", strhex<4>(addr & 0xffff));
s.transform("0123456789abcdef", "df4709156bc8a23e");
return true;
} else {
return false;
}
}
//========
//internal
//========
unsigned Cheat::mirror(unsigned addr) const {
//$00-3f|80-bf:0000-1fff -> $7e:0000-1fff
if((addr & 0x40e000) == 0x000000) return (0x7e0000 + (addr & 0x1fff));
return addr;
}
//=========
//CheatCode
//=========
bool CheatCode::operator=(string s) {
addr.reset();
data.reset();
lstring list;
list.split("+", s.replace(" ", ""));
for(unsigned i = 0; i < list.size(); i++) {
unsigned addr_;
uint8 data_;
Cheat::Type type_;
if(Cheat::decode(list[i], addr_, data_, type_) == false) {
addr.reset();
data.reset();
return false;
}
addr.append(addr_);
data.append(data_);
}
return true;
}
CheatCode::CheatCode() {
enabled = false;
}
}

35
asnes/cheat/cheat.hpp Normal file
View File

@@ -0,0 +1,35 @@
struct CheatCode {
bool enabled;
array<unsigned> addr;
array<uint8> data;
bool operator=(string);
CheatCode();
};
class Cheat : public linear_vector<CheatCode> {
public:
enum class Type : unsigned { ProActionReplay, GameGenie };
bool enabled() const;
void enable(bool);
void synchronize();
bool read(unsigned, uint8&) const;
inline bool active() const;
inline bool exists(unsigned addr) const;
Cheat();
static bool decode(const char*, unsigned&, uint8&, Type&);
static bool encode(string&, unsigned, uint8, Type);
private:
uint8 bitmask[0x200000];
bool system_enabled;
bool code_enabled;
bool cheat_enabled;
unsigned mirror(unsigned) const;
};
extern Cheat cheat;

8
asnes/chip/bsx/bsx.cpp Normal file
View File

@@ -0,0 +1,8 @@
#include <snes.hpp>
#define BSX_CPP
namespace SNES {
#include "bsx_base.cpp"
#include "bsx_cart.cpp"
#include "bsx_flash.cpp"
}

71
asnes/chip/bsx/bsx.hpp Normal file
View File

@@ -0,0 +1,71 @@
class BSXBase : public MMIO {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
private:
struct {
uint8 r2188, r2189, r218a, r218b;
uint8 r218c, r218d, r218e, r218f;
uint8 r2190, r2191, r2192, r2193;
uint8 r2194, r2195, r2196, r2197;
uint8 r2198, r2199, r219a, r219b;
uint8 r219c, r219d, r219e, r219f;
uint8 r2192_counter;
uint8 r2192_hour, r2192_minute, r2192_second;
} regs;
};
class BSXCart : public MMIO {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
BSXCart();
~BSXCart();
private:
struct {
uint8 r[16];
} regs;
void update_memory_map();
};
class BSXFlash : public Memory {
public:
void init();
void enable();
void power();
void reset();
unsigned size() const;
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
private:
struct {
unsigned command;
uint8 write_old;
uint8 write_new;
bool flash_enable;
bool read_enable;
bool write_enable;
} regs;
};
extern BSXBase bsxbase;
extern BSXCart bsxcart;
extern BSXFlash bsxflash;

140
asnes/chip/bsx/bsx_base.cpp Normal file
View File

@@ -0,0 +1,140 @@
#ifdef BSX_CPP
BSXBase bsxbase;
void BSXBase::init() {
}
void BSXBase::enable() {
for(uint16 i = 0x2188; i <= 0x219f; i++) memory::mmio.map(i, *this);
}
void BSXBase::power() {
reset();
}
void BSXBase::reset() {
memset(&regs, 0x00, sizeof regs);
}
uint8 BSXBase::mmio_read(unsigned addr) {
addr &= 0xffff;
switch(addr) {
case 0x2188: return regs.r2188;
case 0x2189: return regs.r2189;
case 0x218a: return regs.r218a;
case 0x218c: return regs.r218c;
case 0x218e: return regs.r218e;
case 0x218f: return regs.r218f;
case 0x2190: return regs.r2190;
case 0x2192: {
unsigned counter = regs.r2192_counter++;
if(regs.r2192_counter >= 18) regs.r2192_counter = 0;
if(counter == 0) {
time_t rawtime;
time(&rawtime);
tm *t = localtime(&rawtime);
regs.r2192_hour = t->tm_hour;
regs.r2192_minute = t->tm_min;
regs.r2192_second = t->tm_sec;
}
switch(counter) {
case 0: return 0x00; //???
case 1: return 0x00; //???
case 2: return 0x00; //???
case 3: return 0x00; //???
case 4: return 0x00; //???
case 5: return 0x01;
case 6: return 0x01;
case 7: return 0x00;
case 8: return 0x00;
case 9: return 0x00;
case 10: return regs.r2192_second;
case 11: return regs.r2192_minute;
case 12: return regs.r2192_hour;
case 13: return 0x00; //???
case 14: return 0x00; //???
case 15: return 0x00; //???
case 16: return 0x00; //???
case 17: return 0x00; //???
}
} break;
case 0x2193: return regs.r2193 & ~0x0c;
case 0x2194: return regs.r2194;
case 0x2196: return regs.r2196;
case 0x2197: return regs.r2197;
case 0x2199: return regs.r2199;
}
return cpu.regs.mdr;
}
void BSXBase::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
switch(addr) {
case 0x2188: {
regs.r2188 = data;
} break;
case 0x2189: {
regs.r2189 = data;
} break;
case 0x218a: {
regs.r218a = data;
} break;
case 0x218b: {
regs.r218b = data;
} break;
case 0x218c: {
regs.r218c = data;
} break;
case 0x218e: {
regs.r218e = data;
} break;
case 0x218f: {
regs.r218e >>= 1;
regs.r218e = regs.r218f - regs.r218e;
regs.r218f >>= 1;
} break;
case 0x2191: {
regs.r2191 = data;
regs.r2192_counter = 0;
} break;
case 0x2192: {
regs.r2190 = 0x80;
} break;
case 0x2193: {
regs.r2193 = data;
} break;
case 0x2194: {
regs.r2194 = data;
} break;
case 0x2197: {
regs.r2197 = data;
} break;
case 0x2199: {
regs.r2199 = data;
} break;
}
}
#endif

View File

@@ -0,0 +1,96 @@
#ifdef BSX_CPP
BSXCart bsxcart;
void BSXCart::init() {
}
void BSXCart::enable() {
}
void BSXCart::power() {
reset();
}
void BSXCart::reset() {
for(unsigned i = 0; i < 16; i++) regs.r[i] = 0x00;
regs.r[0x07] = 0x80;
regs.r[0x08] = 0x80;
update_memory_map();
}
void BSXCart::update_memory_map() {
Memory &cart = (regs.r[0x01] & 0x80) == 0x00 ? (Memory&)bsxflash : (Memory&)memory::bsxpram;
if((regs.r[0x02] & 0x80) == 0x00) {
//LoROM mapping
bus.map(Bus::MapMode::Linear, 0x00, 0x7d, 0x8000, 0xffff, cart);
bus.map(Bus::MapMode::Linear, 0x80, 0xff, 0x8000, 0xffff, cart);
} else {
//HiROM mapping
bus.map(Bus::MapMode::Shadow, 0x00, 0x3f, 0x8000, 0xffff, cart);
bus.map(Bus::MapMode::Linear, 0x40, 0x7d, 0x0000, 0xffff, cart);
bus.map(Bus::MapMode::Shadow, 0x80, 0xbf, 0x8000, 0xffff, cart);
bus.map(Bus::MapMode::Linear, 0xc0, 0xff, 0x0000, 0xffff, cart);
}
if(regs.r[0x03] & 0x80) {
bus.map(Bus::MapMode::Linear, 0x60, 0x6f, 0x0000, 0xffff, memory::bsxpram);
//bus.map(Bus::MapMode::Linear, 0x70, 0x77, 0x0000, 0xffff, memory::bsxpram);
}
if((regs.r[0x05] & 0x80) == 0x00) {
bus.map(Bus::MapMode::Linear, 0x40, 0x4f, 0x0000, 0xffff, memory::bsxpram);
}
if((regs.r[0x06] & 0x80) == 0x00) {
bus.map(Bus::MapMode::Linear, 0x50, 0x5f, 0x0000, 0xffff, memory::bsxpram);
}
if(regs.r[0x07] & 0x80) {
bus.map(Bus::MapMode::Linear, 0x00, 0x1f, 0x8000, 0xffff, memory::cartrom);
}
if(regs.r[0x08] & 0x80) {
bus.map(Bus::MapMode::Linear, 0x80, 0x9f, 0x8000, 0xffff, memory::cartrom);
}
bus.map(Bus::MapMode::Shadow, 0x20, 0x3f, 0x6000, 0x7fff, memory::bsxpram);
bus.map(Bus::MapMode::Linear, 0x70, 0x77, 0x0000, 0xffff, memory::bsxpram);
}
uint8 BSXCart::mmio_read(unsigned addr) {
if((addr & 0xf0ffff) == 0x005000) { //$[00-0f]:5000 MMIO
uint8 n = (addr >> 16) & 15;
return regs.r[n];
}
if((addr & 0xf8f000) == 0x105000) { //$[10-17]:[5000-5fff] SRAM
return memory::bsxram.read(((addr >> 16) & 7) * 0x1000 + (addr & 0xfff));
}
return 0x00;
}
void BSXCart::mmio_write(unsigned addr, uint8 data) {
if((addr & 0xf0ffff) == 0x005000) { //$[00-0f]:5000 MMIO
uint8 n = (addr >> 16) & 15;
regs.r[n] = data;
if(n == 0x0e && data & 0x80) update_memory_map();
return;
}
if((addr & 0xf8f000) == 0x105000) { //$[10-17]:[5000-5fff] SRAM
return memory::bsxram.write(((addr >> 16) & 7) * 0x1000 + (addr & 0xfff), data);
}
}
BSXCart::BSXCart() {
}
BSXCart::~BSXCart() {
}
#endif

View File

@@ -0,0 +1,119 @@
#ifdef BSX_CPP
BSXFlash bsxflash;
void BSXFlash::init() {}
void BSXFlash::enable() {}
void BSXFlash::power() {
reset();
}
void BSXFlash::reset() {
regs.command = 0;
regs.write_old = 0x00;
regs.write_new = 0x00;
regs.flash_enable = false;
regs.read_enable = false;
regs.write_enable = false;
memory::bsxflash.write_protect(!regs.write_enable);
}
unsigned BSXFlash::size() const {
return memory::bsxflash.size();
}
uint8 BSXFlash::read(unsigned addr) {
if(addr == 0x0002) {
if(regs.flash_enable) return 0x80;
}
if(addr == 0x5555) {
if(regs.flash_enable) return 0x80;
}
if(regs.read_enable && addr >= 0xff00 && addr <= 0xff13) {
//read flash cartridge vendor information
switch(addr - 0xff00) {
case 0x00: return 0x4d;
case 0x01: return 0x00;
case 0x02: return 0x50;
case 0x03: return 0x00;
case 0x04: return 0x00;
case 0x05: return 0x00;
case 0x06: return 0x2a; //0x2a = 8mbit, 0x2b = 16mbit (not known to exist, though BIOS recognizes ID)
case 0x07: return 0x00;
default: return 0x00;
}
}
return memory::bsxflash.read(addr);
}
void BSXFlash::write(unsigned addr, uint8 data) {
//there exist both read-only and read-write BS-X flash cartridges ...
//unfortunately, the vendor info is not stored inside memory dumps
//of BS-X flashcarts, so it is impossible to determine whether a
//given flashcart is writeable.
//however, it has been observed that LoROM-mapped BS-X carts always
//use read-write flashcarts, and HiROM-mapped BS-X carts always use
//read-only flashcarts.
//below is an unfortunately necessary workaround to this problem.
//if(cartridge.mapper() == Cartridge::BSCHiROM) return;
if((addr & 0xff0000) == 0) {
regs.write_old = regs.write_new;
regs.write_new = data;
if(regs.write_enable && regs.write_old == regs.write_new) {
return memory::bsxflash.write(addr, data);
}
} else {
if(regs.write_enable) {
return memory::bsxflash.write(addr, data);
}
}
if(addr == 0x0000) {
regs.command <<= 8;
regs.command |= data;
if((regs.command & 0xffff) == 0x38d0) {
regs.flash_enable = true;
regs.read_enable = true;
}
}
if(addr == 0x2aaa) {
regs.command <<= 8;
regs.command |= data;
}
if(addr == 0x5555) {
regs.command <<= 8;
regs.command |= data;
if((regs.command & 0xffffff) == 0xaa5570) {
regs.write_enable = false;
}
if((regs.command & 0xffffff) == 0xaa55a0) {
regs.write_old = 0x00;
regs.write_new = 0x00;
regs.flash_enable = true;
regs.write_enable = true;
}
if((regs.command & 0xffffff) == 0xaa55f0) {
regs.flash_enable = false;
regs.read_enable = false;
regs.write_enable = false;
}
memory::bsxflash.write_protect(!regs.write_enable);
}
}
#endif

31
asnes/chip/chip.hpp Normal file
View File

@@ -0,0 +1,31 @@
struct Coprocessor : Processor {
alwaysinline void step(unsigned clocks);
alwaysinline void synchronize_cpu();
};
#include <chip/supergameboy/supergameboy.hpp>
#include <chip/superfx/superfx.hpp>
#include <chip/sa1/sa1.hpp>
#include <chip/bsx/bsx.hpp>
#include <chip/srtc/srtc.hpp>
#include <chip/sdd1/sdd1.hpp>
#include <chip/spc7110/spc7110.hpp>
#include <chip/cx4/cx4.hpp>
#include <chip/dsp1/dsp1.hpp>
#include <chip/dsp2/dsp2.hpp>
#include <chip/dsp3/dsp3.hpp>
#include <chip/dsp4/dsp4.hpp>
#include <chip/obc1/obc1.hpp>
#include <chip/st0010/st0010.hpp>
#include <chip/st0011/st0011.hpp>
#include <chip/st0018/st0018.hpp>
#include <chip/msu1/msu1.hpp>
#include <chip/serial/serial.hpp>
void Coprocessor::step(unsigned clocks) {
clock += clocks * (uint64)cpu.frequency;
}
void Coprocessor::synchronize_cpu() {
if(clock >= 0 && scheduler.sync != Scheduler::SynchronizeMode::All) co_switch(cpu.thread);
}

208
asnes/chip/cx4/cx4.cpp Normal file
View File

@@ -0,0 +1,208 @@
//=============
//Cx4 emulation
//=============
//Used in Rockman X2/X3 (Megaman X2/X3)
//Portions (c) anomie, Overload, zsKnight, Nach, byuu
#include <snes.hpp>
#define CX4_CPP
namespace SNES {
Cx4 cx4;
#include "serialization.cpp"
#include "data.cpp"
#include "functions.cpp"
#include "oam.cpp"
#include "opcodes.cpp"
void Cx4::init() {
}
void Cx4::enable() {
}
uint32 Cx4::ldr(uint8 r) {
uint16 addr = 0x0080 + (r * 3);
return (reg[addr + 0] << 0)
| (reg[addr + 1] << 8)
| (reg[addr + 2] << 16);
}
void Cx4::str(uint8 r, uint32 data) {
uint16 addr = 0x0080 + (r * 3);
reg[addr + 0] = (data >> 0);
reg[addr + 1] = (data >> 8);
reg[addr + 2] = (data >> 16);
}
void Cx4::mul(uint32 x, uint32 y, uint32 &rl, uint32 &rh) {
int64 rx = x & 0xffffff;
int64 ry = y & 0xffffff;
if(rx & 0x800000)rx |= ~0x7fffff;
if(ry & 0x800000)ry |= ~0x7fffff;
rx *= ry;
rl = (rx) & 0xffffff;
rh = (rx >> 24) & 0xffffff;
}
uint32 Cx4::sin(uint32 rx) {
r0 = rx & 0x1ff;
if(r0 & 0x100)r0 ^= 0x1ff;
if(r0 & 0x080)r0 ^= 0x0ff;
if(rx & 0x100) {
return sin_table[r0 + 0x80];
} else {
return sin_table[r0];
}
}
uint32 Cx4::cos(uint32 rx) {
return sin(rx + 0x080);
}
void Cx4::immediate_reg(uint32 start) {
r0 = ldr(0);
for(uint32 i = start; i < 48; i++) {
if((r0 & 0x0fff) < 0x0c00) {
ram[r0 & 0x0fff] = immediate_data[i];
}
r0++;
}
str(0, r0);
}
void Cx4::transfer_data() {
uint32 src;
uint16 dest, count;
src = (reg[0x40]) | (reg[0x41] << 8) | (reg[0x42] << 16);
count = (reg[0x43]) | (reg[0x44] << 8);
dest = (reg[0x45]) | (reg[0x46] << 8);
for(uint32 i=0;i<count;i++) {
write(dest++, bus.read(src++));
}
}
void Cx4::write(unsigned addr, uint8 data) {
addr &= 0x1fff;
if(addr < 0x0c00) {
//ram
ram[addr] = data;
return;
}
if(addr < 0x1f00) {
//unmapped
return;
}
//command register
reg[addr & 0xff] = data;
if(addr == 0x1f47) {
//memory transfer
transfer_data();
return;
}
if(addr == 0x1f4f) {
//c4 command
if(reg[0x4d] == 0x0e && !(data & 0xc3)) {
//c4 test command
reg[0x80] = data >> 2;
return;
}
switch(data) {
case 0x00: op00(); break;
case 0x01: op01(); break;
case 0x05: op05(); break;
case 0x0d: op0d(); break;
case 0x10: op10(); break;
case 0x13: op13(); break;
case 0x15: op15(); break;
case 0x1f: op1f(); break;
case 0x22: op22(); break;
case 0x25: op25(); break;
case 0x2d: op2d(); break;
case 0x40: op40(); break;
case 0x54: op54(); break;
case 0x5c: op5c(); break;
case 0x5e: op5e(); break;
case 0x60: op60(); break;
case 0x62: op62(); break;
case 0x64: op64(); break;
case 0x66: op66(); break;
case 0x68: op68(); break;
case 0x6a: op6a(); break;
case 0x6c: op6c(); break;
case 0x6e: op6e(); break;
case 0x70: op70(); break;
case 0x72: op72(); break;
case 0x74: op74(); break;
case 0x76: op76(); break;
case 0x78: op78(); break;
case 0x7a: op7a(); break;
case 0x7c: op7c(); break;
case 0x89: op89(); break;
}
}
}
void Cx4::writeb(uint16 addr, uint8 data) {
write(addr, data);
}
void Cx4::writew(uint16 addr, uint16 data) {
write(addr + 0, data >> 0);
write(addr + 1, data >> 8);
}
void Cx4::writel(uint16 addr, uint32 data) {
write(addr + 0, data >> 0);
write(addr + 1, data >> 8);
write(addr + 2, data >> 16);
}
uint8 Cx4::read(unsigned addr) {
addr &= 0x1fff;
if(addr < 0x0c00) {
return ram[addr];
}
if(addr >= 0x1f00) {
return reg[addr & 0xff];
}
return cpu.regs.mdr;
}
uint8 Cx4::readb(uint16 addr) {
return read(addr);
}
uint16 Cx4::readw(uint16 addr) {
return read(addr) | (read(addr + 1) << 8);
}
uint32 Cx4::readl(uint16 addr) {
return read(addr) | (read(addr + 1) << 8) + (read(addr + 2) << 16);
}
void Cx4::power() {
reset();
}
void Cx4::reset() {
memset(ram, 0, 0x0c00);
memset(reg, 0, 0x0100);
}
};

95
asnes/chip/cx4/cx4.hpp Normal file
View File

@@ -0,0 +1,95 @@
class Cx4 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
private:
uint8 ram[0x0c00];
uint8 reg[0x0100];
uint32 r0, r1, r2, r3, r4, r5, r6, r7,
r8, r9, r10, r11, r12, r13, r14, r15;
static const uint8 immediate_data[48];
static const uint16 wave_data[40];
static const uint32 sin_table[256];
static const int16 SinTable[512];
static const int16 CosTable[512];
int16 C4WFXVal, C4WFYVal, C4WFZVal, C4WFX2Val, C4WFY2Val, C4WFDist, C4WFScale;
int16 C41FXVal, C41FYVal, C41FAngleRes, C41FDist, C41FDistVal;
void C4TransfWireFrame();
void C4TransfWireFrame2();
void C4CalcWireFrame();
void C4DrawLine(int32 X1, int32 Y1, int16 Z1, int32 X2, int32 Y2, int16 Z2, uint8 Color);
void C4DrawWireFrame();
void C4DoScaleRotate(int row_padding);
public:
uint32 ldr(uint8 r);
void str(uint8 r, uint32 data);
void mul(uint32 x, uint32 y, uint32 &rl, uint32 &rh);
uint32 sin(uint32 rx);
uint32 cos(uint32 rx);
void transfer_data();
void immediate_reg(uint32 num);
void op00_00();
void op00_03();
void op00_05();
void op00_07();
void op00_08();
void op00_0b();
void op00_0c();
void op00();
void op01();
void op05();
void op0d();
void op10();
void op13();
void op15();
void op1f();
void op22();
void op25();
void op2d();
void op40();
void op54();
void op5c();
void op5e();
void op60();
void op62();
void op64();
void op66();
void op68();
void op6a();
void op6c();
void op6e();
void op70();
void op72();
void op74();
void op76();
void op78();
void op7a();
void op7c();
void op89();
uint8 readb(uint16 addr);
uint16 readw(uint16 addr);
uint32 readl(uint16 addr);
void writeb(uint16 addr, uint8 data);
void writew(uint16 addr, uint16 data);
void writel(uint16 addr, uint32 data);
};
extern Cx4 cx4;

187
asnes/chip/cx4/data.cpp Normal file
View File

@@ -0,0 +1,187 @@
#ifdef CX4_CPP
const uint8 Cx4::immediate_data[48] = {
0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0x00, 0xff, 0x00, 0x00, 0x00, 0xff,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x80, 0xff, 0xff, 0x7f,
0x00, 0x80, 0x00, 0xff, 0x7f, 0x00, 0xff, 0x7f, 0xff, 0x7f, 0xff, 0xff,
0x00, 0x00, 0x01, 0xff, 0xff, 0xfe, 0x00, 0x01, 0x00, 0xff, 0xfe, 0x00
};
const uint16 Cx4::wave_data[40] = {
0x0000, 0x0002, 0x0004, 0x0006, 0x0008, 0x000a, 0x000c, 0x000e,
0x0200, 0x0202, 0x0204, 0x0206, 0x0208, 0x020a, 0x020c, 0x020e,
0x0400, 0x0402, 0x0404, 0x0406, 0x0408, 0x040a, 0x040c, 0x040e,
0x0600, 0x0602, 0x0604, 0x0606, 0x0608, 0x060a, 0x060c, 0x060e,
0x0800, 0x0802, 0x0804, 0x0806, 0x0808, 0x080a, 0x080c, 0x080e
};
const uint32 Cx4::sin_table[256] = {
0x000000, 0x000324, 0x000648, 0x00096c, 0x000c8f, 0x000fb2, 0x0012d5, 0x0015f6,
0x001917, 0x001c37, 0x001f56, 0x002273, 0x002590, 0x0028aa, 0x002bc4, 0x002edb,
0x0031f1, 0x003505, 0x003817, 0x003b26, 0x003e33, 0x00413e, 0x004447, 0x00474d,
0x004a50, 0x004d50, 0x00504d, 0x005347, 0x00563e, 0x005931, 0x005c22, 0x005f0e,
0x0061f7, 0x0064dc, 0x0067bd, 0x006a9b, 0x006d74, 0x007049, 0x007319, 0x0075e5,
0x0078ad, 0x007b70, 0x007e2e, 0x0080e7, 0x00839c, 0x00864b, 0x0088f5, 0x008b9a,
0x008e39, 0x0090d3, 0x009368, 0x0095f6, 0x00987f, 0x009b02, 0x009d7f, 0x009ff6,
0x00a267, 0x00a4d2, 0x00a736, 0x00a994, 0x00abeb, 0x00ae3b, 0x00b085, 0x00b2c8,
0x00b504, 0x00b73a, 0x00b968, 0x00bb8f, 0x00bdae, 0x00bfc7, 0x00c1d8, 0x00c3e2,
0x00c5e4, 0x00c7de, 0x00c9d1, 0x00cbbb, 0x00cd9f, 0x00cf7a, 0x00d14d, 0x00d318,
0x00d4db, 0x00d695, 0x00d848, 0x00d9f2, 0x00db94, 0x00dd2d, 0x00debe, 0x00e046,
0x00e1c5, 0x00e33c, 0x00e4aa, 0x00e60f, 0x00e76b, 0x00e8bf, 0x00ea09, 0x00eb4b,
0x00ec83, 0x00edb2, 0x00eed8, 0x00eff5, 0x00f109, 0x00f213, 0x00f314, 0x00f40b,
0x00f4fa, 0x00f5de, 0x00f6ba, 0x00f78b, 0x00f853, 0x00f912, 0x00f9c7, 0x00fa73,
0x00fb14, 0x00fbac, 0x00fc3b, 0x00fcbf, 0x00fd3a, 0x00fdab, 0x00fe13, 0x00fe70,
0x00fec4, 0x00ff0e, 0x00ff4e, 0x00ff84, 0x00ffb1, 0x00ffd3, 0x00ffec, 0x00fffb,
0x000000, 0xfffcdb, 0xfff9b7, 0xfff693, 0xfff370, 0xfff04d, 0xffed2a, 0xffea09,
0xffe6e8, 0xffe3c8, 0xffe0a9, 0xffdd8c, 0xffda6f, 0xffd755, 0xffd43b, 0xffd124,
0xffce0e, 0xffcafa, 0xffc7e8, 0xffc4d9, 0xffc1cc, 0xffbec1, 0xffbbb8, 0xffb8b2,
0xffb5af, 0xffb2af, 0xffafb2, 0xffacb8, 0xffa9c1, 0xffa6ce, 0xffa3dd, 0xffa0f1,
0xff9e08, 0xff9b23, 0xff9842, 0xff9564, 0xff928b, 0xff8fb6, 0xff8ce6, 0xff8a1a,
0xff8752, 0xff848f, 0xff81d1, 0xff7f18, 0xff7c63, 0xff79b4, 0xff770a, 0xff7465,
0xff71c6, 0xff6f2c, 0xff6c97, 0xff6a09, 0xff6780, 0xff64fd, 0xff6280, 0xff6009,
0xff5d98, 0xff5b2d, 0xff58c9, 0xff566b, 0xff5414, 0xff51c4, 0xff4f7a, 0xff4d37,
0xff4afb, 0xff48c5, 0xff4697, 0xff4470, 0xff4251, 0xff4038, 0xff3e27, 0xff3c1e,
0xff3a1b, 0xff3821, 0xff362e, 0xff3444, 0xff3260, 0xff3085, 0xff2eb2, 0xff2ce7,
0xff2b24, 0xff296a, 0xff27b7, 0xff260d, 0xff246b, 0xff22d2, 0xff2141, 0xff1fb9,
0xff1e3a, 0xff1cc3, 0xff1b55, 0xff19f0, 0xff1894, 0xff1740, 0xff15f6, 0xff14b4,
0xff137c, 0xff124d, 0xff1127, 0xff100a, 0xff0ef6, 0xff0dec, 0xff0ceb, 0xff0bf4,
0xff0b05, 0xff0a21, 0xff0945, 0xff0874, 0xff07ac, 0xff06ed, 0xff0638, 0xff058d,
0xff04eb, 0xff0453, 0xff03c4, 0xff0340, 0xff02c5, 0xff0254, 0xff01ec, 0xff018f,
0xff013b, 0xff00f1, 0xff00b1, 0xff007b, 0xff004e, 0xff002c, 0xff0013, 0xff0004
};
const int16 Cx4::SinTable[512] = {
0, 402, 804, 1206, 1607, 2009, 2410, 2811,
3211, 3611, 4011, 4409, 4808, 5205, 5602, 5997,
6392, 6786, 7179, 7571, 7961, 8351, 8739, 9126,
9512, 9896, 10278, 10659, 11039, 11416, 11793, 12167,
12539, 12910, 13278, 13645, 14010, 14372, 14732, 15090,
15446, 15800, 16151, 16499, 16846, 17189, 17530, 17869,
18204, 18537, 18868, 19195, 19519, 19841, 20159, 20475,
20787, 21097, 21403, 21706, 22005, 22301, 22594, 22884,
23170, 23453, 23732, 24007, 24279, 24547, 24812, 25073,
25330, 25583, 25832, 26077, 26319, 26557, 26790, 27020,
27245, 27466, 27684, 27897, 28106, 28310, 28511, 28707,
28898, 29086, 29269, 29447, 29621, 29791, 29956, 30117,
30273, 30425, 30572, 30714, 30852, 30985, 31114, 31237,
31357, 31471, 31581, 31685, 31785, 31881, 31971, 32057,
32138, 32214, 32285, 32351, 32413, 32469, 32521, 32568,
32610, 32647, 32679, 32706, 32728, 32745, 32758, 32765,
32767, 32765, 32758, 32745, 32728, 32706, 32679, 32647,
32610, 32568, 32521, 32469, 32413, 32351, 32285, 32214,
32138, 32057, 31971, 31881, 31785, 31685, 31581, 31471,
31357, 31237, 31114, 30985, 30852, 30714, 30572, 30425,
30273, 30117, 29956, 29791, 29621, 29447, 29269, 29086,
28898, 28707, 28511, 28310, 28106, 27897, 27684, 27466,
27245, 27020, 26790, 26557, 26319, 26077, 25832, 25583,
25330, 25073, 24812, 24547, 24279, 24007, 23732, 23453,
23170, 22884, 22594, 22301, 22005, 21706, 21403, 21097,
20787, 20475, 20159, 19841, 19519, 19195, 18868, 18537,
18204, 17869, 17530, 17189, 16846, 16499, 16151, 15800,
15446, 15090, 14732, 14372, 14010, 13645, 13278, 12910,
12539, 12167, 11793, 11416, 11039, 10659, 10278, 9896,
9512, 9126, 8739, 8351, 7961, 7571, 7179, 6786,
6392, 5997, 5602, 5205, 4808, 4409, 4011, 3611,
3211, 2811, 2410, 2009, 1607, 1206, 804, 402,
0, -402, -804, -1206, -1607, -2009, -2410, -2811,
-3211, -3611, -4011, -4409, -4808, -5205, -5602, -5997,
-6392, -6786, -7179, -7571, -7961, -8351, -8739, -9126,
-9512, -9896, -10278, -10659, -11039, -11416, -11793, -12167,
-12539, -12910, -13278, -13645, -14010, -14372, -14732, -15090,
-15446, -15800, -16151, -16499, -16846, -17189, -17530, -17869,
-18204, -18537, -18868, -19195, -19519, -19841, -20159, -20475,
-20787, -21097, -21403, -21706, -22005, -22301, -22594, -22884,
-23170, -23453, -23732, -24007, -24279, -24547, -24812, -25073,
-25330, -25583, -25832, -26077, -26319, -26557, -26790, -27020,
-27245, -27466, -27684, -27897, -28106, -28310, -28511, -28707,
-28898, -29086, -29269, -29447, -29621, -29791, -29956, -30117,
-30273, -30425, -30572, -30714, -30852, -30985, -31114, -31237,
-31357, -31471, -31581, -31685, -31785, -31881, -31971, -32057,
-32138, -32214, -32285, -32351, -32413, -32469, -32521, -32568,
-32610, -32647, -32679, -32706, -32728, -32745, -32758, -32765,
-32767, -32765, -32758, -32745, -32728, -32706, -32679, -32647,
-32610, -32568, -32521, -32469, -32413, -32351, -32285, -32214,
-32138, -32057, -31971, -31881, -31785, -31685, -31581, -31471,
-31357, -31237, -31114, -30985, -30852, -30714, -30572, -30425,
-30273, -30117, -29956, -29791, -29621, -29447, -29269, -29086,
-28898, -28707, -28511, -28310, -28106, -27897, -27684, -27466,
-27245, -27020, -26790, -26557, -26319, -26077, -25832, -25583,
-25330, -25073, -24812, -24547, -24279, -24007, -23732, -23453,
-23170, -22884, -22594, -22301, -22005, -21706, -21403, -21097,
-20787, -20475, -20159, -19841, -19519, -19195, -18868, -18537,
-18204, -17869, -17530, -17189, -16846, -16499, -16151, -15800,
-15446, -15090, -14732, -14372, -14010, -13645, -13278, -12910,
-12539, -12167, -11793, -11416, -11039, -10659, -10278, -9896,
-9512, -9126, -8739, -8351, -7961, -7571, -7179, -6786,
-6392, -5997, -5602, -5205, -4808, -4409, -4011, -3611,
-3211, -2811, -2410, -2009, -1607, -1206, -804, -402
};
const int16 Cx4::CosTable[512] = {
32767, 32765, 32758, 32745, 32728, 32706, 32679, 32647,
32610, 32568, 32521, 32469, 32413, 32351, 32285, 32214,
32138, 32057, 31971, 31881, 31785, 31685, 31581, 31471,
31357, 31237, 31114, 30985, 30852, 30714, 30572, 30425,
30273, 30117, 29956, 29791, 29621, 29447, 29269, 29086,
28898, 28707, 28511, 28310, 28106, 27897, 27684, 27466,
27245, 27020, 26790, 26557, 26319, 26077, 25832, 25583,
25330, 25073, 24812, 24547, 24279, 24007, 23732, 23453,
23170, 22884, 22594, 22301, 22005, 21706, 21403, 21097,
20787, 20475, 20159, 19841, 19519, 19195, 18868, 18537,
18204, 17869, 17530, 17189, 16846, 16499, 16151, 15800,
15446, 15090, 14732, 14372, 14010, 13645, 13278, 12910,
12539, 12167, 11793, 11416, 11039, 10659, 10278, 9896,
9512, 9126, 8739, 8351, 7961, 7571, 7179, 6786,
6392, 5997, 5602, 5205, 4808, 4409, 4011, 3611,
3211, 2811, 2410, 2009, 1607, 1206, 804, 402,
0, -402, -804, -1206, -1607, -2009, -2410, -2811,
-3211, -3611, -4011, -4409, -4808, -5205, -5602, -5997,
-6392, -6786, -7179, -7571, -7961, -8351, -8739, -9126,
-9512, -9896, -10278, -10659, -11039, -11416, -11793, -12167,
-12539, -12910, -13278, -13645, -14010, -14372, -14732, -15090,
-15446, -15800, -16151, -16499, -16846, -17189, -17530, -17869,
-18204, -18537, -18868, -19195, -19519, -19841, -20159, -20475,
-20787, -21097, -21403, -21706, -22005, -22301, -22594, -22884,
-23170, -23453, -23732, -24007, -24279, -24547, -24812, -25073,
-25330, -25583, -25832, -26077, -26319, -26557, -26790, -27020,
-27245, -27466, -27684, -27897, -28106, -28310, -28511, -28707,
-28898, -29086, -29269, -29447, -29621, -29791, -29956, -30117,
-30273, -30425, -30572, -30714, -30852, -30985, -31114, -31237,
-31357, -31471, -31581, -31685, -31785, -31881, -31971, -32057,
-32138, -32214, -32285, -32351, -32413, -32469, -32521, -32568,
-32610, -32647, -32679, -32706, -32728, -32745, -32758, -32765,
-32767, -32765, -32758, -32745, -32728, -32706, -32679, -32647,
-32610, -32568, -32521, -32469, -32413, -32351, -32285, -32214,
-32138, -32057, -31971, -31881, -31785, -31685, -31581, -31471,
-31357, -31237, -31114, -30985, -30852, -30714, -30572, -30425,
-30273, -30117, -29956, -29791, -29621, -29447, -29269, -29086,
-28898, -28707, -28511, -28310, -28106, -27897, -27684, -27466,
-27245, -27020, -26790, -26557, -26319, -26077, -25832, -25583,
-25330, -25073, -24812, -24547, -24279, -24007, -23732, -23453,
-23170, -22884, -22594, -22301, -22005, -21706, -21403, -21097,
-20787, -20475, -20159, -19841, -19519, -19195, -18868, -18537,
-18204, -17869, -17530, -17189, -16846, -16499, -16151, -15800,
-15446, -15090, -14732, -14372, -14010, -13645, -13278, -12910,
-12539, -12167, -11793, -11416, -11039, -10659, -10278, -9896,
-9512, -9126, -8739, -8351, -7961, -7571, -7179, -6786,
-6392, -5997, -5602, -5205, -4808, -4409, -4011, -3611,
-3211, -2811, -2410, -2009, -1607, -1206, -804, -402,
0, 402, 804, 1206, 1607, 2009, 2410, 2811,
3211, 3611, 4011, 4409, 4808, 5205, 5602, 5997,
6392, 6786, 7179, 7571, 7961, 8351, 8739, 9126,
9512, 9896, 10278, 10659, 11039, 11416, 11793, 12167,
12539, 12910, 13278, 13645, 14010, 14372, 14732, 15090,
15446, 15800, 16151, 16499, 16846, 17189, 17530, 17869,
18204, 18537, 18868, 19195, 19519, 19841, 20159, 20475,
20787, 21097, 21403, 21706, 22005, 22301, 22594, 22884,
23170, 23453, 23732, 24007, 24279, 24547, 24812, 25073,
25330, 25583, 25832, 26077, 26319, 26557, 26790, 27020,
27245, 27466, 27684, 27897, 28106, 28310, 28511, 28707,
28898, 29086, 29269, 29447, 29621, 29791, 29956, 30117,
30273, 30425, 30572, 30714, 30852, 30985, 31114, 31237,
31357, 31471, 31581, 31685, 31785, 31881, 31971, 32057,
32138, 32214, 32285, 32351, 32413, 32469, 32521, 32568,
32610, 32647, 32679, 32706, 32728, 32745, 32758, 32765
};
#endif

View File

@@ -0,0 +1,251 @@
#ifdef CX4_CPP
#include <math.h>
#define Tan(a) (CosTable[a] ? ((((int32)SinTable[a]) << 16) / CosTable[a]) : 0x80000000)
#define sar(b, n) ((b) >> (n))
#ifdef PI
#undef PI
#endif
#define PI 3.1415926535897932384626433832795
//Wireframe Helpers
void Cx4::C4TransfWireFrame() {
double c4x = (double)C4WFXVal;
double c4y = (double)C4WFYVal;
double c4z = (double)C4WFZVal - 0x95;
double tanval, c4x2, c4y2, c4z2;
//Rotate X
tanval = -(double)C4WFX2Val * PI * 2 / 128;
c4y2 = c4y * ::cos(tanval) - c4z * ::sin(tanval);
c4z2 = c4y * ::sin(tanval) + c4z * ::cos(tanval);
//Rotate Y
tanval = -(double)C4WFY2Val * PI * 2 / 128;
c4x2 = c4x * ::cos(tanval) + c4z2 * ::sin(tanval);
c4z = c4x * -::sin(tanval) + c4z2 * ::cos(tanval);
//Rotate Z
tanval = -(double)C4WFDist * PI * 2 / 128;
c4x = c4x2 * ::cos(tanval) - c4y2 * ::sin(tanval);
c4y = c4x2 * ::sin(tanval) + c4y2 * ::cos(tanval);
//Scale
C4WFXVal = (int16)(c4x * C4WFScale / (0x90 * (c4z + 0x95)) * 0x95);
C4WFYVal = (int16)(c4y * C4WFScale / (0x90 * (c4z + 0x95)) * 0x95);
}
void Cx4::C4CalcWireFrame() {
C4WFXVal = C4WFX2Val - C4WFXVal;
C4WFYVal = C4WFY2Val - C4WFYVal;
if(abs(C4WFXVal) > abs(C4WFYVal)) {
C4WFDist = abs(C4WFXVal) + 1;
C4WFYVal = (256 * (long)C4WFYVal) / abs(C4WFXVal);
C4WFXVal = (C4WFXVal < 0) ? -256 : 256;
} else if(C4WFYVal != 0) {
C4WFDist = abs(C4WFYVal) + 1;
C4WFXVal = (256 * (long)C4WFXVal) / abs(C4WFYVal);
C4WFYVal = (C4WFYVal < 0) ? -256 : 256;
} else {
C4WFDist = 0;
}
}
void Cx4::C4TransfWireFrame2() {
double c4x = (double)C4WFXVal;
double c4y = (double)C4WFYVal;
double c4z = (double)C4WFZVal;
double tanval, c4x2, c4y2, c4z2;
//Rotate X
tanval = -(double)C4WFX2Val * PI * 2 / 128;
c4y2 = c4y * ::cos(tanval) - c4z * ::sin(tanval);
c4z2 = c4y * ::sin(tanval) + c4z * ::cos(tanval);
//Rotate Y
tanval = -(double)C4WFY2Val * PI * 2 / 128;
c4x2 = c4x * ::cos(tanval) + c4z2 * ::sin(tanval);
c4z = c4x * -::sin(tanval) + c4z2 * ::cos(tanval);
//Rotate Z
tanval = -(double)C4WFDist * PI * 2 / 128;
c4x = c4x2 * ::cos(tanval) - c4y2 * ::sin(tanval);
c4y = c4x2 * ::sin(tanval) + c4y2 * ::cos(tanval);
//Scale
C4WFXVal = (int16)(c4x * C4WFScale / 0x100);
C4WFYVal = (int16)(c4y * C4WFScale / 0x100);
}
void Cx4::C4DrawWireFrame() {
uint32 line = readl(0x1f80);
uint32 point1, point2;
int16 X1, Y1, Z1;
int16 X2, Y2, Z2;
uint8 Color;
for(int32 i = ram[0x0295]; i > 0; i--, line += 5) {
if(bus.read(line) == 0xff && bus.read(line + 1) == 0xff) {
int32 tmp = line - 5;
while(bus.read(tmp + 2) == 0xff && bus.read(tmp + 3) == 0xff && (tmp + 2) >= 0) { tmp -= 5; }
point1 = (read(0x1f82) << 16) | (bus.read(tmp + 2) << 8) | bus.read(tmp + 3);
} else {
point1 = (read(0x1f82) << 16) | (bus.read(line) << 8) | bus.read(line + 1);
}
point2 = (read(0x1f82) << 16) | (bus.read(line + 2) << 8) | bus.read(line + 3);
X1=(bus.read(point1 + 0) << 8) | bus.read(point1 + 1);
Y1=(bus.read(point1 + 2) << 8) | bus.read(point1 + 3);
Z1=(bus.read(point1 + 4) << 8) | bus.read(point1 + 5);
X2=(bus.read(point2 + 0) << 8) | bus.read(point2 + 1);
Y2=(bus.read(point2 + 2) << 8) | bus.read(point2 + 3);
Z2=(bus.read(point2 + 4) << 8) | bus.read(point2 + 5);
Color = bus.read(line + 4);
C4DrawLine(X1, Y1, Z1, X2, Y2, Z2, Color);
}
}
void Cx4::C4DrawLine(int32 X1, int32 Y1, int16 Z1, int32 X2, int32 Y2, int16 Z2, uint8 Color) {
//Transform coordinates
C4WFXVal = (int16)X1;
C4WFYVal = (int16)Y1;
C4WFZVal = Z1;
C4WFScale = read(0x1f90);
C4WFX2Val = read(0x1f86);
C4WFY2Val = read(0x1f87);
C4WFDist = read(0x1f88);
C4TransfWireFrame2();
X1 = (C4WFXVal + 48) << 8;
Y1 = (C4WFYVal + 48) << 8;
C4WFXVal = (int16)X2;
C4WFYVal = (int16)Y2;
C4WFZVal = Z2;
C4TransfWireFrame2();
X2 = (C4WFXVal + 48) << 8;
Y2 = (C4WFYVal + 48) << 8;
//Get line info
C4WFXVal = (int16)(X1 >> 8);
C4WFYVal = (int16)(Y1 >> 8);
C4WFX2Val = (int16)(X2 >> 8);
C4WFY2Val = (int16)(Y2 >> 8);
C4CalcWireFrame();
X2 = (int16)C4WFXVal;
Y2 = (int16)C4WFYVal;
//Render line
for(int32 i = C4WFDist ? C4WFDist : 1; i > 0; i--) {
if(X1 > 0xff && Y1 > 0xff && X1 < 0x6000 && Y1 < 0x6000) {
uint16 addr = (((Y1 >> 8) >> 3) << 8) - (((Y1 >> 8) >> 3) << 6) + (((X1 >> 8) >> 3) << 4) + ((Y1 >> 8) & 7) * 2;
uint8 bit = 0x80 >> ((X1 >> 8) & 7);
ram[addr + 0x300] &= ~bit;
ram[addr + 0x301] &= ~bit;
if(Color & 1) ram[addr + 0x300] |= bit;
if(Color & 2) ram[addr + 0x301] |= bit;
}
X1 += X2;
Y1 += Y2;
}
}
void Cx4::C4DoScaleRotate(int row_padding) {
int16 A, B, C, D;
//Calculate matrix
int32 XScale = readw(0x1f8f);
int32 YScale = readw(0x1f92);
if(XScale & 0x8000)XScale = 0x7fff;
if(YScale & 0x8000)YScale = 0x7fff;
if(readw(0x1f80) == 0) { //no rotation
A = (int16)XScale;
B = 0;
C = 0;
D = (int16)YScale;
} else if(readw(0x1f80) == 128) { //90 degree rotation
A = 0;
B = (int16)(-YScale);
C = (int16)XScale;
D = 0;
} else if(readw(0x1f80) == 256) { //180 degree rotation
A = (int16)(-XScale);
B = 0;
C = 0;
D = (int16)(-YScale);
} else if(readw(0x1f80) == 384) { //270 degree rotation
A = 0;
B = (int16)YScale;
C = (int16)(-XScale);
D = 0;
} else {
A = (int16) sar(CosTable[readw(0x1f80) & 0x1ff] * XScale, 15);
B = (int16)(-sar(SinTable[readw(0x1f80) & 0x1ff] * YScale, 15));
C = (int16) sar(SinTable[readw(0x1f80) & 0x1ff] * XScale, 15);
D = (int16) sar(CosTable[readw(0x1f80) & 0x1ff] * YScale, 15);
}
//Calculate Pixel Resolution
uint8 w = read(0x1f89) & ~7;
uint8 h = read(0x1f8c) & ~7;
//Clear the output RAM
memset(ram, 0, (w + row_padding / 4) * h / 2);
int32 Cx = (int16)readw(0x1f83);
int32 Cy = (int16)readw(0x1f86);
//Calculate start position (i.e. (Ox, Oy) = (0, 0))
//The low 12 bits are fractional, so (Cx<<12) gives us the Cx we want in
//the function. We do Cx*A etc normally because the matrix parameters
//already have the fractional parts.
int32 LineX = (Cx << 12) - Cx * A - Cx * B;
int32 LineY = (Cy << 12) - Cy * C - Cy * D;
//Start loop
uint32 X, Y;
uint8 byte;
int32 outidx = 0;
uint8 bit = 0x80;
for(int32 y = 0; y < h; y++) {
X = LineX;
Y = LineY;
for(int32 x = 0; x < w; x++) {
if((X >> 12) >= w || (Y >> 12) >= h) {
byte = 0;
} else {
uint32 addr = (Y >> 12) * w + (X >> 12);
byte = read(0x600 + (addr >> 1));
if(addr & 1) { byte >>= 4; }
}
//De-bitplanify
if(byte & 1) ram[outidx ] |= bit;
if(byte & 2) ram[outidx + 1] |= bit;
if(byte & 4) ram[outidx + 16] |= bit;
if(byte & 8) ram[outidx + 17] |= bit;
bit >>= 1;
if(!bit) {
bit = 0x80;
outidx += 32;
}
X += A; //Add 1 to output x => add an A and a C
Y += C;
}
outidx += 2 + row_padding;
if(outidx & 0x10) {
outidx &= ~0x10;
} else {
outidx -= w * 4 + row_padding;
}
LineX += B; //Add 1 to output y => add a B and a D
LineY += D;
}
}
#endif

228
asnes/chip/cx4/oam.cpp Normal file
View File

@@ -0,0 +1,228 @@
#ifdef CX4_CPP
//Build OAM
void Cx4::op00_00() {
uint32 oamptr = ram[0x626] << 2;
for(int32 i = 0x1fd; i > oamptr && i >= 0; i -= 4) {
//clear oam-to-be
if(i >= 0) ram[i] = 0xe0;
}
uint16 globalx, globaly;
uint32 oamptr2;
int16 sprx, spry;
uint8 sprname, sprattr;
uint8 sprcount;
globalx = readw(0x621);
globaly = readw(0x623);
oamptr2 = 0x200 + (ram[0x626] >> 2);
if(!ram[0x620]) return;
sprcount = 128 - ram[0x626];
uint8 offset = (ram[0x626] & 3) * 2;
uint32 srcptr = 0x220;
for(int i = ram[0x620]; i > 0 && sprcount > 0; i--, srcptr += 16) {
sprx = readw(srcptr) - globalx;
spry = readw(srcptr + 2) - globaly;
sprname = ram[srcptr + 5];
sprattr = ram[srcptr + 4] | ram[srcptr + 6];
uint32 spraddr = readl(srcptr + 7);
if(bus.read(spraddr)) {
int16 x, y;
for(int sprcnt = bus.read(spraddr++); sprcnt > 0 && sprcount > 0; sprcnt--, spraddr += 4) {
x = (int8)bus.read(spraddr + 1);
if(sprattr & 0x40) {
x = -x - ((bus.read(spraddr) & 0x20) ? 16 : 8);
}
x += sprx;
if(x >= -16 && x <= 272) {
y = (int8)bus.read(spraddr + 2);
if(sprattr & 0x80) {
y = -y - ((bus.read(spraddr) & 0x20) ? 16 : 8);
}
y += spry;
if(y >= -16 && y <= 224) {
ram[oamptr ] = (uint8)x;
ram[oamptr + 1] = (uint8)y;
ram[oamptr + 2] = sprname + bus.read(spraddr + 3);
ram[oamptr + 3] = sprattr ^ (bus.read(spraddr) & 0xc0);
ram[oamptr2] &= ~(3 << offset);
if(x & 0x100) ram[oamptr2] |= 1 << offset;
if(bus.read(spraddr) & 0x20) ram[oamptr2] |= 2 << offset;
oamptr += 4;
sprcount--;
offset = (offset + 2) & 6;
if(!offset)oamptr2++;
}
}
}
} else if(sprcount > 0) {
ram[oamptr ] = (uint8)sprx;
ram[oamptr + 1] = (uint8)spry;
ram[oamptr + 2] = sprname;
ram[oamptr + 3] = sprattr;
ram[oamptr2] &= ~(3 << offset);
if(sprx & 0x100) ram[oamptr2] |= 3 << offset;
else ram[oamptr2] |= 2 << offset;
oamptr += 4;
sprcount--;
offset = (offset + 2) & 6;
if(!offset) oamptr2++;
}
}
}
//Scale and Rotate
void Cx4::op00_03() {
C4DoScaleRotate(0);
}
//Transform Lines
void Cx4::op00_05() {
C4WFX2Val = read(0x1f83);
C4WFY2Val = read(0x1f86);
C4WFDist = read(0x1f89);
C4WFScale = read(0x1f8c);
//Transform Vertices
uint32 ptr = 0;
for(int32 i = readw(0x1f80); i > 0; i--, ptr += 0x10) {
C4WFXVal = readw(ptr + 1);
C4WFYVal = readw(ptr + 5);
C4WFZVal = readw(ptr + 9);
C4TransfWireFrame();
//Displace
writew(ptr + 1, C4WFXVal + 0x80);
writew(ptr + 5, C4WFYVal + 0x50);
}
writew(0x600, 23);
writew(0x602, 0x60);
writew(0x605, 0x40);
writew(0x600 + 8, 23);
writew(0x602 + 8, 0x60);
writew(0x605 + 8, 0x40);
ptr = 0xb02;
uint32 ptr2 = 0;
for(int32 i = readw(0xb00); i > 0; i--, ptr += 2, ptr2 += 8) {
C4WFXVal = readw((read(ptr + 0) << 4) + 1);
C4WFYVal = readw((read(ptr + 0) << 4) + 5);
C4WFX2Val = readw((read(ptr + 1) << 4) + 1);
C4WFY2Val = readw((read(ptr + 1) << 4) + 5);
C4CalcWireFrame();
writew(ptr2 + 0x600, C4WFDist ? C4WFDist : 1);
writew(ptr2 + 0x602, C4WFXVal);
writew(ptr2 + 0x605, C4WFYVal);
}
}
//Scale and Rotate
void Cx4::op00_07() {
C4DoScaleRotate(64);
}
//Draw Wireframe
void Cx4::op00_08() {
C4DrawWireFrame();
}
//Disintegrate
void Cx4::op00_0b() {
uint8 width, height;
uint32 startx, starty;
uint32 srcptr;
uint32 x, y;
int32 scalex, scaley;
int32 cx, cy;
int32 i, j;
width = read(0x1f89);
height = read(0x1f8c);
cx = readw(0x1f80);
cy = readw(0x1f83);
scalex = (int16)readw(0x1f86);
scaley = (int16)readw(0x1f8f);
startx = -cx * scalex + (cx << 8);
starty = -cy * scaley + (cy << 8);
srcptr = 0x600;
for(i = 0; i < (width * height) >> 1; i++) {
write(i, 0);
}
for(y = starty, i = 0;i < height; i++, y += scaley) {
for(x = startx, j = 0;j < width; j++, x += scalex) {
if((x >> 8) < width && (y >> 8) < height && (y >> 8) * width + (x >> 8) < 0x2000) {
uint8 pixel = (j & 1) ? (ram[srcptr] >> 4) : (ram[srcptr]);
int32 index = (y >> 11) * width * 4 + (x >> 11) * 32 + ((y >> 8) & 7) * 2;
uint8 mask = 0x80 >> ((x >> 8) & 7);
if(pixel & 1) ram[index ] |= mask;
if(pixel & 2) ram[index + 1] |= mask;
if(pixel & 4) ram[index + 16] |= mask;
if(pixel & 8) ram[index + 17] |= mask;
}
if(j & 1) srcptr++;
}
}
}
//Bitplane Wave
void Cx4::op00_0c() {
uint32 destptr = 0;
uint32 waveptr = read(0x1f83);
uint16 mask1 = 0xc0c0;
uint16 mask2 = 0x3f3f;
for(int j = 0; j < 0x10; j++) {
do {
int16 height = -((int8)read(waveptr + 0xb00)) - 16;
for(int i = 0; i < 40; i++) {
uint16 temp = readw(destptr + wave_data[i]) & mask2;
if(height >= 0) {
if(height < 8) {
temp |= mask1 & readw(0xa00 + height * 2);
} else {
temp |= mask1 & 0xff00;
}
}
writew(destptr + wave_data[i], temp);
height++;
}
waveptr = (waveptr + 1) & 0x7f;
mask1 = (mask1 >> 2) | (mask1 << 6);
mask2 = (mask2 >> 2) | (mask2 << 6);
} while(mask1 != 0xc0c0);
destptr += 16;
do {
int16 height = -((int8)read(waveptr + 0xb00)) - 16;
for(int i = 0; i < 40; i++) {
uint16 temp = readw(destptr + wave_data[i]) & mask2;
if(height >= 0) {
if(height < 8) {
temp |= mask1 & readw(0xa10 + height * 2);
} else {
temp |= mask1 & 0xff00;
}
}
writew(destptr + wave_data[i], temp);
height++;
}
waveptr = (waveptr + 1) & 0x7f;
mask1 = (mask1 >> 2) | (mask1 << 6);
mask2 = (mask2 >> 2) | (mask2 << 6);
} while(mask1 != 0xc0c0);
destptr += 16;
}
}
#endif

227
asnes/chip/cx4/opcodes.cpp Normal file
View File

@@ -0,0 +1,227 @@
#ifdef CX4_CPP
//Sprite Functions
void Cx4::op00() {
switch(reg[0x4d]) {
case 0x00: op00_00(); break;
case 0x03: op00_03(); break;
case 0x05: op00_05(); break;
case 0x07: op00_07(); break;
case 0x08: op00_08(); break;
case 0x0b: op00_0b(); break;
case 0x0c: op00_0c(); break;
}
}
//Draw Wireframe
void Cx4::op01() {
memset(ram + 0x300, 0, 2304);
C4DrawWireFrame();
}
//Propulsion
void Cx4::op05() {
int32 temp = 0x10000;
if(readw(0x1f83)) {
temp = sar((temp / readw(0x1f83)) * readw(0x1f81), 8);
}
writew(0x1f80, temp);
}
//Set Vector length
void Cx4::op0d() {
C41FXVal = readw(0x1f80);
C41FYVal = readw(0x1f83);
C41FDistVal = readw(0x1f86);
double tanval = sqrt(((double)C41FYVal) * ((double)C41FYVal) + ((double)C41FXVal) * ((double)C41FXVal));
tanval = (double)C41FDistVal / tanval;
C41FYVal = (int16)(((double)C41FYVal * tanval) * 0.99);
C41FXVal = (int16)(((double)C41FXVal * tanval) * 0.98);
writew(0x1f89, C41FXVal);
writew(0x1f8c, C41FYVal);
}
//Triangle
void Cx4::op10() {
r0 = ldr(0);
r1 = ldr(1);
r4 = r0 & 0x1ff;
if(r1 & 0x8000)r1 |= ~0x7fff;
mul(cos(r4), r1, r5, r2);
r5 = (r5 >> 16) & 0xff;
r2 = (r2 << 8) + r5;
mul(sin(r4), r1, r5, r3);
r5 = (r5 >> 16) & 0xff;
r3 = (r3 << 8) + r5;
str(0, r0);
str(1, r1);
str(2, r2);
str(3, r3);
str(4, r4);
str(5, r5);
}
//Triangle
void Cx4::op13() {
r0 = ldr(0);
r1 = ldr(1);
r4 = r0 & 0x1ff;
mul(cos(r4), r1, r5, r2);
r5 = (r5 >> 8) & 0xffff;
r2 = (r2 << 16) + r5;
mul(sin(r4), r1, r5, r3);
r5 = (r5 >> 8) & 0xffff;
r3 = (r3 << 16) + r5;
str(0, r0);
str(1, r1);
str(2, r2);
str(3, r3);
str(4, r4);
str(5, r5);
}
//Pythagorean
void Cx4::op15() {
C41FXVal = readw(0x1f80);
C41FYVal = readw(0x1f83);
C41FDist = (int16)sqrt((double)C41FXVal * (double)C41FXVal + (double)C41FYVal * (double)C41FYVal);
writew(0x1f80, C41FDist);
}
//Calculate distance
void Cx4::op1f() {
C41FXVal = readw(0x1f80);
C41FYVal = readw(0x1f83);
if(!C41FXVal) {
C41FAngleRes = (C41FYVal > 0) ? 0x080 : 0x180;
} else {
double tanval = ((double)C41FYVal) / ((double)C41FXVal);
C41FAngleRes = (short)(atan(tanval) / (PI * 2) * 512);
C41FAngleRes = C41FAngleRes;
if(C41FXVal < 0) {
C41FAngleRes += 0x100;
}
C41FAngleRes &= 0x1ff;
}
writew(0x1f86, C41FAngleRes);
}
//Trapezoid
void Cx4::op22() {
int16 angle1 = readw(0x1f8c) & 0x1ff;
int16 angle2 = readw(0x1f8f) & 0x1ff;
int32 tan1 = Tan(angle1);
int32 tan2 = Tan(angle2);
int16 y = readw(0x1f83) - readw(0x1f89);
int16 left, right;
for(int32 j = 0; j < 225; j++, y++) {
if(y >= 0) {
left = sar((int32)tan1 * y, 16) - readw(0x1f80) + readw(0x1f86);
right = sar((int32)tan2 * y, 16) - readw(0x1f80) + readw(0x1f86) + readw(0x1f93);
if(left < 0 && right < 0) {
left = 1;
right = 0;
} else if(left < 0) {
left = 0;
} else if(right < 0) {
right = 0;
}
if(left > 255 && right > 255) {
left = 255;
right = 254;
} else if(left > 255) {
left = 255;
} else if(right > 255) {
right = 255;
}
} else {
left = 1;
right = 0;
}
ram[j + 0x800] = (uint8)left;
ram[j + 0x900] = (uint8)right;
}
}
//Multiply
void Cx4::op25() {
r0 = ldr(0);
r1 = ldr(1);
mul(r0, r1, r0, r1);
str(0, r0);
str(1, r1);
}
//Transform Coords
void Cx4::op2d() {
C4WFXVal = readw(0x1f81);
C4WFYVal = readw(0x1f84);
C4WFZVal = readw(0x1f87);
C4WFX2Val = read (0x1f89);
C4WFY2Val = read (0x1f8a);
C4WFDist = read (0x1f8b);
C4WFScale = readw(0x1f90);
C4TransfWireFrame2();
writew(0x1f80, C4WFXVal);
writew(0x1f83, C4WFYVal);
}
//Sum
void Cx4::op40() {
r0 = 0;
for(uint32 i=0;i<0x800;i++) {
r0 += ram[i];
}
str(0, r0);
}
//Square
void Cx4::op54() {
r0 = ldr(0);
mul(r0, r0, r1, r2);
str(1, r1);
str(2, r2);
}
//Immediate Register
void Cx4::op5c() {
str(0, 0x000000);
immediate_reg(0);
}
//Immediate Register (Multiple)
void Cx4::op5e() { immediate_reg( 0); }
void Cx4::op60() { immediate_reg( 3); }
void Cx4::op62() { immediate_reg( 6); }
void Cx4::op64() { immediate_reg( 9); }
void Cx4::op66() { immediate_reg(12); }
void Cx4::op68() { immediate_reg(15); }
void Cx4::op6a() { immediate_reg(18); }
void Cx4::op6c() { immediate_reg(21); }
void Cx4::op6e() { immediate_reg(24); }
void Cx4::op70() { immediate_reg(27); }
void Cx4::op72() { immediate_reg(30); }
void Cx4::op74() { immediate_reg(33); }
void Cx4::op76() { immediate_reg(36); }
void Cx4::op78() { immediate_reg(39); }
void Cx4::op7a() { immediate_reg(42); }
void Cx4::op7c() { immediate_reg(45); }
//Immediate ROM
void Cx4::op89() {
str(0, 0x054336);
str(1, 0xffffff);
}
#endif

View File

@@ -0,0 +1,39 @@
#ifdef CX4_CPP
void Cx4::serialize(serializer &s) {
s.array(ram);
s.array(reg);
s.integer(r0);
s.integer(r1);
s.integer(r2);
s.integer(r3);
s.integer(r4);
s.integer(r5);
s.integer(r6);
s.integer(r7);
s.integer(r8);
s.integer(r9);
s.integer(r10);
s.integer(r11);
s.integer(r12);
s.integer(r13);
s.integer(r14);
s.integer(r15);
s.integer(C4WFXVal);
s.integer(C4WFYVal);
s.integer(C4WFZVal);
s.integer(C4WFX2Val);
s.integer(C4WFY2Val);
s.integer(C4WFDist);
s.integer(C4WFScale);
s.integer(C41FXVal);
s.integer(C41FYVal);
s.integer(C41FAngleRes);
s.integer(C41FDist);
s.integer(C41FDistVal);
}
#endif

33
asnes/chip/dsp1/dsp1.cpp Normal file
View File

@@ -0,0 +1,33 @@
#include <snes.hpp>
#define DSP1_CPP
namespace SNES {
DSP1 dsp1;
DSP1DR dsp1dr;
DSP1SR dsp1sr;
#include "serialization.cpp"
#include "dsp1emu.cpp"
void DSP1::init() {
}
void DSP1::enable() {
}
void DSP1::power() {
reset();
}
void DSP1::reset() {
dsp1.reset();
}
uint8 DSP1DR::read(unsigned addr) { return dsp1.dsp1.getDr(); }
void DSP1DR::write(unsigned addr, uint8 data) { dsp1.dsp1.setDr(data); }
uint8 DSP1SR::read(unsigned addr) { return dsp1.dsp1.getSr(); }
void DSP1SR::write(unsigned addr, uint8 data) {}
}

30
asnes/chip/dsp1/dsp1.hpp Normal file
View File

@@ -0,0 +1,30 @@
#include "dsp1emu.hpp"
class DSP1 {
public:
void init();
void enable();
void power();
void reset();
void serialize(serializer&);
private:
Dsp1 dsp1;
friend class DSP1DR;
friend class DSP1SR;
};
class DSP1DR : public Memory {
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
};
class DSP1SR : public Memory {
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
};
extern DSP1 dsp1;
extern DSP1DR dsp1dr;
extern DSP1SR dsp1sr;

1625
asnes/chip/dsp1/dsp1emu.cpp Normal file

File diff suppressed because it is too large Load Diff

129
asnes/chip/dsp1/dsp1emu.hpp Normal file
View File

@@ -0,0 +1,129 @@
// DSP-1's emulation code
//
// Based on research by Overload, The Dumper, Neviksti and Andreas Naive
// Date: June 2006
#ifndef __DSP1EMUL_H
#define __DSP1EMUL_H
#define DSP1_VERSION 0x0102
class Dsp1
{
public:
// The DSP-1 status register has 16 bits, but only
// the upper 8 bits can be accessed from an external device, so all these
// positions are referred to the upper byte (bits D8 to D15)
enum SrFlags {DRC=0x04, DRS=0x10, RQM=0x80};
// According to Overload's docs, these are the meanings of the flags:
// DRC: The Data Register Control (DRC) bit specifies the data transfer length to and from the host CPU.
// 0: Data transfer to and from the DSP-1 is 16 bits.
// 1: Data transfer to and from the DSP-1 is 8 bits.
// DRS: The Data Register Status (DRS) bit indicates the data transfer status in the case of transfering 16-bit data.
// 0: Data transfer has terminated.
// 1: Data transfer in progress.
// RQM: The Request for Master (RQM) indicates that the DSP1 is requesting host CPU for data read/write.
// 0: Internal Data Register Transfer.
// 1: External Data Register Transfer.
Dsp1();
uint8 getSr(); // return the status register's high byte
uint8 getDr();
void setDr(uint8 iDr);
void reset();
void serialize(serializer&);
private:
enum FsmMajorState {WAIT_COMMAND, READ_DATA, WRITE_DATA};
enum MaxDataAccesses {MAX_READS=7, MAX_WRITES=1024};
struct Command {
void (Dsp1::*callback)(int16 *, int16 *);
unsigned int reads;
unsigned int writes;
};
static const Command mCommandTable[];
static const int16 MaxAZS_Exp[16];
static const int16 SinTable[];
static const int16 MulTable[];
static const uint16 DataRom[];
struct SharedData { // some RAM variables shared between commands
int16 MatrixA[3][3]; // attitude matrix A
int16 MatrixB[3][3];
int16 MatrixC[3][3];
int16 CentreX, CentreY, CentreZ; // center of projection
int16 CentreZ_C, CentreZ_E;
int16 VOffset; // vertical offset of the screen with regard to the centre of projection
int16 Les, C_Les, E_Les;
int16 SinAas, CosAas;
int16 SinAzs, CosAzs;
int16 SinAZS, CosAZS;
int16 SecAZS_C1, SecAZS_E1;
int16 SecAZS_C2, SecAZS_E2;
int16 Nx, Ny, Nz; // normal vector to the screen (norm 1, points toward the center of projection)
int16 Gx, Gy, Gz; // center of the screen (global coordinates)
int16 Hx, Hy; // horizontal vector of the screen (Hz=0, norm 1, points toward the right of the screen)
int16 Vx, Vy, Vz; // vertical vector of the screen (norm 1, points toward the top of the screen)
} shared;
uint8 mSr; // status register
int mSrLowByteAccess;
uint16 mDr; // "internal" representation of the data register
unsigned mFsmMajorState; // current major state of the FSM
uint8 mCommand; // current command processed by the FSM
uint8 mDataCounter; // #uint16 read/writes counter used by the FSM
int16 mReadBuffer[MAX_READS];
int16 mWriteBuffer[MAX_WRITES];
bool mFreeze; // need explanation? ;)
void fsmStep(bool read, uint8 &data); // FSM logic
// commands
void memoryTest(int16 *input, int16 *output);
void memoryDump(int16 *input, int16 *output);
void memorySize(int16 *input, int16 *output);
void multiply(int16* input, int16* output);
void multiply2(int16* input, int16* output);
void inverse(int16 *input, int16 *output);
void triangle(int16 *input, int16 *output);
void radius(int16 *input, int16 *output);
void range(int16 *input, int16 *output);
void range2(int16 *input, int16 *output);
void distance(int16 *input, int16 *output);
void rotate(int16 *input, int16 *output);
void polar(int16 *input, int16 *output);
void attitudeA(int16 *input, int16 *output);
void attitudeB(int16 *input, int16 *output);
void attitudeC(int16 *input, int16 *output);
void objectiveA(int16 *input, int16 *output);
void objectiveB(int16 *input, int16 *output);
void objectiveC(int16 *input, int16 *output);
void subjectiveA(int16 *input, int16 *output);
void subjectiveB(int16 *input, int16 *output);
void subjectiveC(int16 *input, int16 *output);
void scalarA(int16 *input, int16 *output);
void scalarB(int16 *input, int16 *output);
void scalarC(int16 *input, int16 *output);
void gyrate(int16 *input, int16 *output);
void parameter(int16 *input, int16 *output);
void raster(int16 *input, int16 *output);
void target(int16 *input, int16 *output);
void project(int16 *input, int16 *output);
// auxiliar functions
int16 sin(int16 Angle);
int16 cos(int16 Angle);
void inverse(int16 Coefficient, int16 Exponent, int16 &iCoefficient, int16 &iExponent);
int16 denormalizeAndClip(int16 C, int16 E);
void normalize(int16 m, int16 &Coefficient, int16 &Exponent);
void normalizeDouble(int32 Product, int16 &Coefficient, int16 &Exponent);
int16 shiftR(int16 C, int16 E);
};
#endif

View File

@@ -0,0 +1,56 @@
#ifdef DSP1_CPP
void DSP1::serialize(serializer &s) {
dsp1.serialize(s);
}
void Dsp1::serialize(serializer &s) {
for(unsigned i = 0; i < 3; i++) {
s.array(shared.MatrixA[i]);
s.array(shared.MatrixB[i]);
s.array(shared.MatrixC[i]);
}
s.integer(shared.CentreX);
s.integer(shared.CentreY);
s.integer(shared.CentreZ);
s.integer(shared.CentreZ_C);
s.integer(shared.CentreZ_E);
s.integer(shared.VOffset);
s.integer(shared.Les);
s.integer(shared.C_Les);
s.integer(shared.E_Les);
s.integer(shared.SinAas);
s.integer(shared.CosAas);
s.integer(shared.SinAzs);
s.integer(shared.CosAzs);
s.integer(shared.SinAZS);
s.integer(shared.CosAZS);
s.integer(shared.SecAZS_C1);
s.integer(shared.SecAZS_E1);
s.integer(shared.SecAZS_C2);
s.integer(shared.SecAZS_E2);
s.integer(shared.Nx);
s.integer(shared.Ny);
s.integer(shared.Nz);
s.integer(shared.Gx);
s.integer(shared.Gy);
s.integer(shared.Gz);
s.integer(shared.Hx);
s.integer(shared.Hy);
s.integer(shared.Vx);
s.integer(shared.Vy);
s.integer(shared.Vz);
s.integer(mSr);
s.integer(mSrLowByteAccess);
s.integer(mDr);
s.integer(mFsmMajorState);
s.integer(mCommand);
s.integer(mDataCounter);
s.array(mReadBuffer);
s.array(mWriteBuffer);
s.integer(mFreeze);
}
#endif

153
asnes/chip/dsp2/dsp2.cpp Normal file
View File

@@ -0,0 +1,153 @@
#include <snes.hpp>
#define DSP2_CPP
namespace SNES {
DSP2 dsp2;
DSP2DR dsp2dr;
DSP2SR dsp2sr;
#include "serialization.cpp"
#include "opcodes.cpp"
void DSP2::init() {
}
void DSP2::enable() {
}
void DSP2::power() {
reset();
}
void DSP2::reset() {
status.waiting_for_command = true;
status.in_count = 0;
status.in_index = 0;
status.out_count = 0;
status.out_index = 0;
status.op05transparent = 0;
status.op05haslen = false;
status.op05len = 0;
status.op06haslen = false;
status.op06len = 0;
status.op09word1 = 0;
status.op09word2 = 0;
status.op0dhaslen = false;
status.op0doutlen = 0;
status.op0dinlen = 0;
}
uint8 DSP2::read(unsigned addr) {
uint8 r = 0xff;
if(status.out_count) {
r = status.output[status.out_index++];
status.out_index &= 511;
if(status.out_count == status.out_index) {
status.out_count = 0;
}
}
return r;
}
void DSP2::write(unsigned addr, uint8 data) {
if(status.waiting_for_command) {
status.command = data;
status.in_index = 0;
status.waiting_for_command = false;
switch(data) {
case 0x01: status.in_count = 32; break;
case 0x03: status.in_count = 1; break;
case 0x05: status.in_count = 1; break;
case 0x06: status.in_count = 1; break;
case 0x07: break;
case 0x08: break;
case 0x09: status.in_count = 4; break;
case 0x0d: status.in_count = 2; break;
case 0x0f: status.in_count = 0; break;
}
} else {
status.parameters[status.in_index++] = data;
status.in_index &= 511;
}
if(status.in_count == status.in_index) {
status.waiting_for_command = true;
status.out_index = 0;
switch(status.command) {
case 0x01: {
status.out_count = 32;
op01();
} break;
case 0x03: {
op03();
} break;
case 0x05: {
if(status.op05haslen) {
status.op05haslen = false;
status.out_count = status.op05len;
op05();
} else {
status.op05len = status.parameters[0];
status.in_index = 0;
status.in_count = status.op05len * 2;
status.op05haslen = true;
if(data)status.waiting_for_command = false;
}
} break;
case 0x06: {
if(status.op06haslen) {
status.op06haslen = false;
status.out_count = status.op06len;
op06();
} else {
status.op06len = status.parameters[0];
status.in_index = 0;
status.in_count = status.op06len;
status.op06haslen = true;
if(data)status.waiting_for_command = false;
}
} break;
case 0x07: break;
case 0x08: break;
case 0x09: {
op09();
} break;
case 0x0d: {
if(status.op0dhaslen) {
status.op0dhaslen = false;
status.out_count = status.op0doutlen;
op0d();
} else {
status.op0dinlen = status.parameters[0];
status.op0doutlen = status.parameters[1];
status.in_index = 0;
status.in_count = (status.op0dinlen + 1) >> 1;
status.op0dhaslen = true;
if(data)status.waiting_for_command = false;
}
} break;
case 0x0f: break;
}
}
}
DSP2::DSP2() {}
DSP2::~DSP2() {}
uint8 DSP2DR::read(unsigned addr) { return dsp2.read(addr); }
void DSP2DR::write(unsigned addr, uint8 data) { dsp2.write(addr, data); }
uint8 DSP2SR::read(unsigned addr) { return 0x00; }
void DSP2SR::write(unsigned addr, uint8 data) {}
}

57
asnes/chip/dsp2/dsp2.hpp Normal file
View File

@@ -0,0 +1,57 @@
class DSP2 {
public:
struct {
bool waiting_for_command;
unsigned command;
unsigned in_count, in_index;
unsigned out_count, out_index;
uint8 parameters[512];
uint8 output[512];
uint8 op05transparent;
bool op05haslen;
int op05len;
bool op06haslen;
int op06len;
uint16 op09word1;
uint16 op09word2;
bool op0dhaslen;
int op0doutlen;
int op0dinlen;
} status;
void init();
void enable();
void power();
void reset();
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
DSP2();
~DSP2();
protected:
void op01();
void op03();
void op05();
void op06();
void op09();
void op0d();
};
class DSP2DR : public Memory {
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
};
class DSP2SR : public Memory {
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
};
extern DSP2 dsp2;
extern DSP2DR dsp2dr;
extern DSP2SR dsp2sr;

177
asnes/chip/dsp2/opcodes.cpp Normal file
View File

@@ -0,0 +1,177 @@
#ifdef DSP2_CPP
//convert bitmap to bitplane tile
void DSP2::op01() {
//op01 size is always 32 bytes input and output
//the hardware does strange things if you vary the size
unsigned char c0, c1, c2, c3;
unsigned char *p1 = status.parameters;
unsigned char *p2a = status.output;
unsigned char *p2b = status.output + 16; //halfway
//process 8 blocks of 4 bytes each
for(int j = 0; j < 8; j++) {
c0 = *p1++;
c1 = *p1++;
c2 = *p1++;
c3 = *p1++;
*p2a++ = (c0 & 0x10) << 3 |
(c0 & 0x01) << 6 |
(c1 & 0x10) << 1 |
(c1 & 0x01) << 4 |
(c2 & 0x10) >> 1 |
(c2 & 0x01) << 2 |
(c3 & 0x10) >> 3 |
(c3 & 0x01);
*p2a++ = (c0 & 0x20) << 2 |
(c0 & 0x02) << 5 |
(c1 & 0x20) |
(c1 & 0x02) << 3 |
(c2 & 0x20) >> 2 |
(c2 & 0x02) << 1 |
(c3 & 0x20) >> 4 |
(c3 & 0x02) >> 1;
*p2b++ = (c0 & 0x40) << 1 |
(c0 & 0x04) << 4 |
(c1 & 0x40) >> 1 |
(c1 & 0x04) << 2 |
(c2 & 0x40) >> 3 |
(c2 & 0x04) |
(c3 & 0x40) >> 5 |
(c3 & 0x04) >> 2;
*p2b++ = (c0 & 0x80) |
(c0 & 0x08) << 3 |
(c1 & 0x80) >> 2 |
(c1 & 0x08) << 1 |
(c2 & 0x80) >> 4 |
(c2 & 0x08) >> 1 |
(c3 & 0x80) >> 6 |
(c3 & 0x08) >> 3;
}
}
//set transparent color
void DSP2::op03() {
status.op05transparent = status.parameters[0];
}
//replace bitmap using transparent color
void DSP2::op05() {
uint8 color;
// Overlay bitmap with transparency.
// Input:
//
// Bitmap 1: i[0] <=> i[size-1]
// Bitmap 2: i[size] <=> i[2*size-1]
//
// Output:
//
// Bitmap 3: o[0] <=> o[size-1]
//
// Processing:
//
// Process all 4-bit pixels (nibbles) in the bitmap
//
// if ( BM2_pixel == transparent_color )
// pixelout = BM1_pixel
// else
// pixelout = BM2_pixel
// The max size bitmap is limited to 255 because the size parameter is a byte
// I think size=0 is an error. The behavior of the chip on size=0 is to
// return the last value written to DR if you read DR on Op05 with
// size = 0. I don't think it's worth implementing this quirk unless it's
// proven necessary.
unsigned char c1, c2;
unsigned char *p1 = status.parameters;
unsigned char *p2 = status.parameters + status.op05len;
unsigned char *p3 = status.output;
color = status.op05transparent & 0x0f;
for(int n = 0; n < status.op05len; n++) {
c1 = *p1++;
c2 = *p2++;
*p3++ = ( ((c2 >> 4) == color ) ? c1 & 0xf0 : c2 & 0xf0 ) |
( ((c2 & 0x0f) == color ) ? c1 & 0x0f : c2 & 0x0f );
}
}
//reverse bitmap
void DSP2::op06() {
// Input:
// size
// bitmap
int i, j;
for(i = 0, j = status.op06len - 1; i < status.op06len; i++, j--) {
status.output[j] = (status.parameters[i] << 4) | (status.parameters[i] >> 4);
}
}
//multiply
void DSP2::op09() {
status.out_count = 4;
status.op09word1 = status.parameters[0] | (status.parameters[1] << 8);
status.op09word2 = status.parameters[2] | (status.parameters[3] << 8);
uint32 r;
r = status.op09word1 * status.op09word2;
status.output[0] = r;
status.output[1] = r >> 8;
status.output[2] = r >> 16;
status.output[3] = r >> 24;
}
//scale bitmap
void DSP2::op0d() {
// Bit accurate hardware algorithm - uses fixed point math
// This should match the DSP2 Op0D output exactly
// I wouldn't recommend using this unless you're doing hardware debug.
// In some situations it has small visual artifacts that
// are not readily apparent on a TV screen but show up clearly
// on a monitor. Use Overload's scaling instead.
// This is for hardware verification testing.
//
// One note: the HW can do odd byte scaling but since we divide
// by two to get the count of bytes this won't work well for
// odd byte scaling (in any of the current algorithm implementations).
// So far I haven't seen Dungeon Master use it.
// If it does we can adjust the parameters and code to work with it
uint32 multiplier; // Any size int >= 32-bits
uint32 pixloc; // match size of multiplier
int i, j;
uint8 pixelarray[512];
if(status.op0dinlen <= status.op0doutlen) {
multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1
} else {
multiplier = (status.op0dinlen << 17) / ((status.op0doutlen << 1) + 1);
}
pixloc = 0;
for(i = 0; i < status.op0doutlen * 2; i++) {
j = pixloc >> 16;
if(j & 1) {
pixelarray[i] = (status.parameters[j >> 1] & 0x0f);
} else {
pixelarray[i] = (status.parameters[j >> 1] & 0xf0) >> 4;
}
pixloc += multiplier;
}
for(i = 0; i < status.op0doutlen; i++) {
status.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}
}
#endif

View File

@@ -0,0 +1,26 @@
#ifdef DSP2_CPP
void DSP2::serialize(serializer &s) {
s.integer(status.waiting_for_command);
s.integer(status.command);
s.integer(status.in_count);
s.integer(status.in_index);
s.integer(status.out_count);
s.integer(status.out_index);
s.array(status.parameters);
s.array(status.output);
s.integer(status.op05transparent);
s.integer(status.op05haslen);
s.integer(status.op05len);
s.integer(status.op06haslen);
s.integer(status.op06len);
s.integer(status.op09word1);
s.integer(status.op09word2);
s.integer(status.op0dhaslen);
s.integer(status.op0doutlen);
s.integer(status.op0dinlen);
}
#endif

40
asnes/chip/dsp3/dsp3.cpp Normal file
View File

@@ -0,0 +1,40 @@
#include <snes.hpp>
#define DSP3_CPP
namespace SNES {
DSP3 dsp3;
namespace DSP3i {
#define bool8 uint8
#include "dsp3emu.c"
#undef bool8
};
void DSP3::init() {
}
void DSP3::enable() {
}
void DSP3::power() {
reset();
}
void DSP3::reset() {
DSP3i::DSP3_Reset();
}
uint8 DSP3::read(unsigned addr) {
DSP3i::dsp3_address = addr & 0xffff;
DSP3i::DSP3GetByte();
return DSP3i::dsp3_byte;
}
void DSP3::write(unsigned addr, uint8 data) {
DSP3i::dsp3_address = addr & 0xffff;
DSP3i::dsp3_byte = data;
DSP3i::DSP3SetByte();
}
}

12
asnes/chip/dsp3/dsp3.hpp Normal file
View File

@@ -0,0 +1,12 @@
class DSP3 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read (unsigned addr);
void write(unsigned addr, uint8 data);
};
extern DSP3 dsp3;

1146
asnes/chip/dsp3/dsp3emu.c Normal file

File diff suppressed because it is too large Load Diff

60
asnes/chip/dsp4/dsp4.cpp Normal file
View File

@@ -0,0 +1,60 @@
#include <snes.hpp>
#define DSP4_CPP
namespace SNES {
DSP4 dsp4;
void DSP4::init() {
}
void DSP4::enable() {
}
namespace DSP4i {
inline uint16 READ_WORD(uint8 *addr) {
return (addr[0]) + (addr[1] << 8);
}
inline uint32 READ_DWORD(uint8 *addr) {
return (addr[0]) + (addr[1] << 8) + (addr[2] << 16) + (addr[3] << 24);
}
inline void WRITE_WORD(uint8 *addr, uint16 data) {
addr[0] = data;
addr[1] = data >> 8;
}
#define bool8 uint8
#include "dsp4emu.c"
#undef bool8
};
void DSP4::power() {
reset();
}
void DSP4::reset() {
DSP4i::InitDSP4();
}
uint8 DSP4::read(unsigned addr) {
addr &= 0xffff;
if(addr < 0xc000) {
DSP4i::dsp4_address = addr;
DSP4i::DSP4GetByte();
return DSP4i::dsp4_byte;
}
return 0x80;
}
void DSP4::write(unsigned addr, uint8 data) {
addr &= 0xffff;
if(addr < 0xc000) {
DSP4i::dsp4_address = addr;
DSP4i::dsp4_byte = data;
DSP4i::DSP4SetByte();
}
}
}

12
asnes/chip/dsp4/dsp4.hpp Normal file
View File

@@ -0,0 +1,12 @@
class DSP4 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read (unsigned addr);
void write(unsigned addr, uint8 data);
};
extern DSP4 dsp4;

2150
asnes/chip/dsp4/dsp4emu.c Normal file

File diff suppressed because it is too large Load Diff

108
asnes/chip/dsp4/dsp4emu.h Normal file
View File

@@ -0,0 +1,108 @@
//DSP-4 emulator code
//Copyright (c) 2004-2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden
#ifndef DSP4EMU_H
#define DSP4EMU_H
#undef TRUE
#undef FALSE
#define TRUE true
#define FALSE false
struct DSP4_t
{
bool8 waiting4command;
bool8 half_command;
uint16 command;
uint32 in_count;
uint32 in_index;
uint32 out_count;
uint32 out_index;
uint8 parameters[512];
uint8 output[512];
};
extern struct DSP4_t DSP4;
struct DSP4_vars_t
{
// op control
int8 DSP4_Logic; // controls op flow
// projection format
int16 lcv; // loop-control variable
int16 distance; // z-position into virtual world
int16 raster; // current raster line
int16 segments; // number of raster lines drawn
// 1.15.16 or 1.15.0 [sign, integer, fraction]
int32 world_x; // line of x-projection in world
int32 world_y; // line of y-projection in world
int32 world_dx; // projection line x-delta
int32 world_dy; // projection line y-delta
int16 world_ddx; // x-delta increment
int16 world_ddy; // y-delta increment
int32 world_xenv; // world x-shaping factor
int16 world_yofs; // world y-vertical scroll
int16 view_x1; // current viewer-x
int16 view_y1; // current viewer-y
int16 view_x2; // future viewer-x
int16 view_y2; // future viewer-y
int16 view_dx; // view x-delta factor
int16 view_dy; // view y-delta factor
int16 view_xofs1; // current viewer x-vertical scroll
int16 view_yofs1; // current viewer y-vertical scroll
int16 view_xofs2; // future viewer x-vertical scroll
int16 view_yofs2; // future viewer y-vertical scroll
int16 view_yofsenv; // y-scroll shaping factor
int16 view_turnoff_x; // road turnoff data
int16 view_turnoff_dx; // road turnoff delta factor
// drawing area
int16 viewport_cx; // x-center of viewport window
int16 viewport_cy; // y-center of render window
int16 viewport_left; // x-left of viewport
int16 viewport_right; // x-right of viewport
int16 viewport_top; // y-top of viewport
int16 viewport_bottom; // y-bottom of viewport
// sprite structure
int16 sprite_x; // projected x-pos of sprite
int16 sprite_y; // projected y-pos of sprite
int16 sprite_attr; // obj attributes
bool8 sprite_size; // sprite size: 8x8 or 16x16
int16 sprite_clipy; // visible line to clip pixels off
int16 sprite_count;
// generic projection variables designed for
// two solid polygons + two polygon sides
int16 poly_clipLf[2][2]; // left clip boundary
int16 poly_clipRt[2][2]; // right clip boundary
int16 poly_ptr[2][2]; // HDMA structure pointers
int16 poly_raster[2][2]; // current raster line below horizon
int16 poly_top[2][2]; // top clip boundary
int16 poly_bottom[2][2]; // bottom clip boundary
int16 poly_cx[2][2]; // center for left/right points
int16 poly_start[2]; // current projection points
int16 poly_plane[2]; // previous z-plane distance
// OAM
int16 OAM_attr[16]; // OAM (size,MSB) data
int16 OAM_index; // index into OAM table
int16 OAM_bits; // offset into OAM table
int16 OAM_RowMax; // maximum number of tiles per 8 aligned pixels (row)
int16 OAM_Row[32]; // current number of tiles per row
};
extern struct DSP4_vars_t DSP4_vars;
#endif

148
asnes/chip/msu1/msu1.cpp Normal file
View File

@@ -0,0 +1,148 @@
#include <snes.hpp>
#define MSU1_CPP
namespace SNES {
MSU1 msu1;
#include "serialization.cpp"
void MSU1::Enter() { msu1.enter(); }
void MSU1::enter() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
int16 left = 0, right = 0;
if(mmio.audio_play) {
if(audiofile.open()) {
if(audiofile.end()) {
if(!mmio.audio_repeat) mmio.audio_play = false;
audiofile.seek(mmio.audio_offset = 58);
} else {
mmio.audio_offset += 4;
left = audiofile.readl(2);
right = audiofile.readl(2);
}
} else {
mmio.audio_play = false;
}
}
left = sclamp<16>((double)left * (double)mmio.audio_volume / 255.0);
right = sclamp<16>((double)right * (double)mmio.audio_volume / 255.0);
audio.coprocessor_sample(left, right);
step(1);
synchronize_cpu();
}
}
void MSU1::init() {
}
void MSU1::enable() {
audio.coprocessor_enable(true);
audio.coprocessor_frequency(44100.0);
if(datafile.open()) datafile.close();
datafile.open(string() << cartridge.basename() << ".msu", file::mode_read);
}
void MSU1::power() {
reset();
}
void MSU1::reset() {
create(MSU1::Enter, 44100);
mmio.data_offset = 0;
mmio.audio_offset = 0;
mmio.audio_track = 0;
mmio.audio_volume = 255;
mmio.data_busy = true;
mmio.audio_busy = true;
mmio.audio_repeat = false;
mmio.audio_play = false;
}
uint8 MSU1::mmio_read(unsigned addr) {
addr &= 0xffff;
if(addr == 0x2000) {
return (mmio.data_busy << 7)
| (mmio.audio_busy << 6)
| (mmio.audio_repeat << 5)
| (mmio.audio_play << 4)
| (Revision << 0);
}
if(addr == 0x2001) {
if(mmio.data_busy) return 0x00;
mmio.data_offset++;
if(datafile.open()) return datafile.read();
return 0x00;
}
if(addr == 0x2002) return 'S';
if(addr == 0x2003) return '-';
if(addr == 0x2004) return 'M';
if(addr == 0x2005) return 'S';
if(addr == 0x2006) return 'U';
if(addr == 0x2007) return '0' + Revision;
return 0x00;
}
void MSU1::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
if(addr == 0x2000) {
mmio.data_offset = (mmio.data_offset & 0xffffff00) | (data << 0);
}
if(addr == 0x2001) {
mmio.data_offset = (mmio.data_offset & 0xffff00ff) | (data << 8);
}
if(addr == 0x2002) {
mmio.data_offset = (mmio.data_offset & 0xff00ffff) | (data << 16);
}
if(addr == 0x2003) {
mmio.data_offset = (mmio.data_offset & 0x00ffffff) | (data << 24);
if(datafile.open()) datafile.seek(mmio.data_offset);
mmio.data_busy = false;
}
if(addr == 0x2004) {
mmio.audio_track = (mmio.audio_track & 0xff00) | (data << 0);
}
if(addr == 0x2005) {
mmio.audio_track = (mmio.audio_track & 0x00ff) | (data << 8);
if(audiofile.open()) audiofile.close();
char track[16];
sprintf(track, "-%u", mmio.audio_track);
if(audiofile.open(string() << cartridge.basename() << track << ".wav", file::mode_read)) {
audiofile.seek(mmio.audio_offset = 58); //skip WAV header
}
mmio.audio_busy = false;
mmio.audio_repeat = false;
mmio.audio_play = false;
}
if(addr == 0x2006) {
mmio.audio_volume = data;
}
if(addr == 0x2007) {
mmio.audio_repeat = data & 2;
mmio.audio_play = data & 1;
}
}
}

39
asnes/chip/msu1/msu1.hpp Normal file
View File

@@ -0,0 +1,39 @@
class MSU1 : public Coprocessor, public MMIO {
public:
static void Enter();
void enter();
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
void serialize(serializer&);
private:
file datafile;
file audiofile;
enum Flag {
DataBusy = 0x80,
AudioBusy = 0x40,
AudioRepeating = 0x20,
AudioPlaying = 0x10,
Revision = 0x01,
};
struct MMIO {
uint32 data_offset;
uint32 audio_offset;
uint16 audio_track;
uint8 audio_volume;
bool data_busy;
bool audio_busy;
bool audio_repeat;
bool audio_play;
} mmio;
};
extern MSU1 msu1;

View File

@@ -0,0 +1,28 @@
#ifdef MSU1_CPP
void MSU1::serialize(serializer &s) {
Processor::serialize(s);
s.integer(mmio.data_offset);
s.integer(mmio.audio_offset);
s.integer(mmio.audio_track);
s.integer(mmio.audio_volume);
s.integer(mmio.data_busy);
s.integer(mmio.audio_busy);
s.integer(mmio.audio_repeat);
s.integer(mmio.audio_play);
if(datafile.open()) datafile.close();
if(datafile.open(string() << cartridge.basename() << ".msu", file::mode_read)) {
datafile.seek(mmio.data_offset);
}
if(audiofile.open()) audiofile.close();
char track[16];
sprintf(track, "-%u", mmio.audio_track);
if(audiofile.open(string() << cartridge.basename() << track << ".wav", file::mode_read)) {
audiofile.seek(mmio.audio_offset);
}
}
#endif

82
asnes/chip/obc1/obc1.cpp Normal file
View File

@@ -0,0 +1,82 @@
#include <snes.hpp>
#define OBC1_CPP
namespace SNES {
OBC1 obc1;
#include "serialization.cpp"
void OBC1::init() {
}
void OBC1::enable() {
}
void OBC1::power() {
reset();
}
void OBC1::reset() {
for(unsigned i = 0x0000; i <= 0x1fff; i++) ram_write(i, 0xff);
status.baseptr = (ram_read(0x1ff5) & 1) ? 0x1800 : 0x1c00;
status.address = (ram_read(0x1ff6) & 0x7f);
status.shift = (ram_read(0x1ff6) & 3) << 1;
}
uint8 OBC1::read(unsigned addr) {
addr &= 0x1fff;
if((addr & 0x1ff8) != 0x1ff0) return ram_read(addr);
switch(addr) { default: //never used, avoids compiler warning
case 0x1ff0: return ram_read(status.baseptr + (status.address << 2) + 0);
case 0x1ff1: return ram_read(status.baseptr + (status.address << 2) + 1);
case 0x1ff2: return ram_read(status.baseptr + (status.address << 2) + 2);
case 0x1ff3: return ram_read(status.baseptr + (status.address << 2) + 3);
case 0x1ff4: return ram_read(status.baseptr + (status.address >> 2) + 0x200);
case 0x1ff5: case 0x1ff6: case 0x1ff7: return ram_read(addr);
}
}
void OBC1::write(unsigned addr, uint8 data) {
addr &= 0x1fff;
if((addr & 0x1ff8) != 0x1ff0) return ram_write(addr, data);
switch(addr) {
case 0x1ff0: ram_write(status.baseptr + (status.address << 2) + 0, data); break;
case 0x1ff1: ram_write(status.baseptr + (status.address << 2) + 1, data); break;
case 0x1ff2: ram_write(status.baseptr + (status.address << 2) + 2, data); break;
case 0x1ff3: ram_write(status.baseptr + (status.address << 2) + 3, data); break;
case 0x1ff4: {
uint8 temp = ram_read(status.baseptr + (status.address >> 2) + 0x200);
temp = (temp & ~(3 << status.shift)) | ((data & 3) << status.shift);
ram_write(status.baseptr + (status.address >> 2) + 0x200, temp);
} break;
case 0x1ff5: {
status.baseptr = (data & 1) ? 0x1800 : 0x1c00;
ram_write(addr, data);
} break;
case 0x1ff6: {
status.address = (data & 0x7f);
status.shift = (data & 3) << 1;
ram_write(addr, data);
} break;
case 0x1ff7: {
ram_write(addr, data);
} break;
}
}
uint8 OBC1::ram_read(unsigned addr) {
return memory::cartram.read(addr & 0x1fff);
}
void OBC1::ram_write(unsigned addr, uint8 data) {
memory::cartram.write(addr & 0x1fff, data);
}
OBC1::OBC1() {}
OBC1::~OBC1() {}
}

26
asnes/chip/obc1/obc1.hpp Normal file
View File

@@ -0,0 +1,26 @@
class OBC1 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
OBC1();
~OBC1();
private:
uint8 ram_read(unsigned addr);
void ram_write(unsigned addr, uint8 data);
struct {
uint16 address;
uint16 baseptr;
uint16 shift;
} status;
};
extern OBC1 obc1;

View File

@@ -0,0 +1,9 @@
#ifdef OBC1_CPP
void OBC1::serialize(serializer &s) {
s.integer(status.address);
s.integer(status.baseptr);
s.integer(status.shift);
}
#endif

218
asnes/chip/sa1/bus/bus.cpp Normal file
View File

@@ -0,0 +1,218 @@
#ifdef SA1_CPP
VBRBus vbrbus;
SA1Bus sa1bus;
namespace memory {
StaticRAM iram(2048);
//accessed by:
VSPROM vsprom; //S-CPU + SA-1
CPUIRAM cpuiram; //S-CPU
SA1IRAM sa1iram; //SA-1
SA1BWRAM sa1bwram; //SA-1
CC1BWRAM cc1bwram; //S-CPU
BitmapRAM bitmapram; //SA-1
}
//$230c (VDPL), $230d (VDPH) use this bus to read variable-length data.
//this is used both to avoid VBR-reads from accessing MMIO registers, and
//to avoid syncing the S-CPU and SA-1*; as both chips are able to access
//these ports.
//(* eg, memory::cartram is used directly, as memory::sa1bwram syncs to the S-CPU)
void VBRBus::init() {
map(MapMode::Direct, 0x00, 0xff, 0x0000, 0xffff, memory::memory_unmapped);
map(MapMode::Linear, 0x00, 0x3f, 0x0000, 0x07ff, memory::iram);
map(MapMode::Linear, 0x00, 0x3f, 0x3000, 0x37ff, memory::iram);
map(MapMode::Linear, 0x00, 0x3f, 0x6000, 0x7fff, memory::cartram);
map(MapMode::Linear, 0x00, 0x3f, 0x8000, 0xffff, memory::vsprom);
map(MapMode::Linear, 0x40, 0x4f, 0x0000, 0xffff, memory::cartram);
map(MapMode::Linear, 0x80, 0xbf, 0x0000, 0x07ff, memory::iram);
map(MapMode::Linear, 0x80, 0xbf, 0x3000, 0x37ff, memory::iram);
map(MapMode::Linear, 0x80, 0xbf, 0x6000, 0x7fff, memory::cartram);
map(MapMode::Linear, 0x80, 0xbf, 0x8000, 0xffff, memory::vsprom);
map(MapMode::Linear, 0xc0, 0xff, 0x0000, 0xffff, memory::vsprom);
}
void SA1Bus::init() {
map(MapMode::Direct, 0x00, 0xff, 0x0000, 0xffff, memory::memory_unmapped);
map(MapMode::Linear, 0x00, 0x3f, 0x0000, 0x07ff, memory::sa1iram);
map(MapMode::Direct, 0x00, 0x3f, 0x2200, 0x23ff, memory::mmio);
map(MapMode::Linear, 0x00, 0x3f, 0x3000, 0x37ff, memory::sa1iram);
map(MapMode::Linear, 0x00, 0x3f, 0x6000, 0x7fff, memory::sa1bwram);
map(MapMode::Linear, 0x00, 0x3f, 0x8000, 0xffff, memory::vsprom);
map(MapMode::Linear, 0x40, 0x4f, 0x0000, 0xffff, memory::sa1bwram);
map(MapMode::Linear, 0x60, 0x6f, 0x0000, 0xffff, memory::bitmapram);
map(MapMode::Linear, 0x80, 0xbf, 0x0000, 0x07ff, memory::sa1iram);
map(MapMode::Direct, 0x80, 0xbf, 0x2200, 0x23ff, memory::mmio);
map(MapMode::Linear, 0x80, 0xbf, 0x3000, 0x37ff, memory::sa1iram);
map(MapMode::Linear, 0x80, 0xbf, 0x6000, 0x7fff, memory::sa1bwram);
map(MapMode::Linear, 0x80, 0xbf, 0x8000, 0xffff, memory::vsprom);
map(MapMode::Linear, 0xc0, 0xff, 0x0000, 0xffff, memory::vsprom);
}
//======
//VSPROM
//======
//this class maps $00:[ff00-ffff] for the purpose of supporting:
//$2209.d6 IVSW (S-CPU IRQ vector selection) (0 = cart, 1 = SA-1)
//$2209.d4 NVSW (S-CPU NMI vector selection) (0 = cart, 1 = SA-1)
//when set, vector addresses are over-ridden with SA-1 register settings:
//SIV = S-CPU IRQ vector address override
//SNV = S-CPU NMI vector address override
//
//$00:[ffea-ffeb|ffee-ffef] are special cased on read;
//all other addresses return original mapped data.
unsigned VSPROM::size() const {
return memory::cartrom.size();
}
uint8 VSPROM::read(unsigned addr) {
//use $7fex instead of $ffex due to linear mapping of 32k granularity ROM data
if((addr & 0xffffe0) == 0x007fe0) {
if(addr == 0x7fea && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 0;
if(addr == 0x7feb && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 8;
if(addr == 0x7fee && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 0;
if(addr == 0x7fef && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 8;
}
return memory::cartrom.read(addr);
}
void VSPROM::write(unsigned addr, uint8 data) {
}
//=======
//SA1IRAM
//=======
unsigned SA1IRAM::size() const {
return memory::iram.size();
}
uint8 SA1IRAM::read(unsigned addr) {
sa1.synchronize_cpu();
return memory::iram.read(addr);
}
void SA1IRAM::write(unsigned addr, uint8 data) {
sa1.synchronize_cpu();
memory::iram.write(addr, data);
}
//=======
//CPUIRAM
//=======
unsigned CPUIRAM::size() const {
return memory::iram.size();
}
uint8 CPUIRAM::read(unsigned addr) {
cpu.synchronize_coprocessor();
return memory::iram.read(addr);
}
void CPUIRAM::write(unsigned addr, uint8 data) {
cpu.synchronize_coprocessor();
memory::iram.write(addr, data);
}
//========
//SA1BWRAM
//========
unsigned SA1BWRAM::size() const {
return memory::cartram.size();
}
uint8 SA1BWRAM::read(unsigned addr) {
sa1.synchronize_cpu();
return memory::cartram.read(addr);
}
void SA1BWRAM::write(unsigned addr, uint8 data) {
sa1.synchronize_cpu();
memory::cartram.write(addr, data);
}
//========
//CC1BWRAM
//========
unsigned CC1BWRAM::size() const {
return memory::cartram.size();
}
uint8 CC1BWRAM::read(unsigned addr) {
cpu.synchronize_coprocessor();
if(dma) return sa1.dma_cc1_read(addr);
return memory::cartram.read(addr);
}
void CC1BWRAM::write(unsigned addr, uint8 data) {
cpu.synchronize_coprocessor();
memory::cartram.write(addr, data);
}
//=========
//BitmapRAM
//=========
unsigned BitmapRAM::size() const {
return 0x100000;
}
uint8 BitmapRAM::read(unsigned addr) {
sa1.synchronize_cpu();
if(sa1.mmio.bbf == 0) {
//4bpp
unsigned shift = addr & 1;
addr = (addr >> 1) & (memory::cartram.size() - 1);
switch(shift) { default:
case 0: return (memory::cartram.read(addr) >> 0) & 15;
case 1: return (memory::cartram.read(addr) >> 4) & 15;
}
} else {
//2bpp
unsigned shift = addr & 3;
addr = (addr >> 2) & (memory::cartram.size() - 1);
switch(shift) { default:
case 0: return (memory::cartram.read(addr) >> 0) & 3;
case 1: return (memory::cartram.read(addr) >> 2) & 3;
case 2: return (memory::cartram.read(addr) >> 4) & 3;
case 3: return (memory::cartram.read(addr) >> 6) & 3;
}
}
}
void BitmapRAM::write(unsigned addr, uint8 data) {
sa1.synchronize_cpu();
if(sa1.mmio.bbf == 0) {
//4bpp
unsigned shift = addr & 1;
addr = (addr >> 1) & (memory::cartram.size() - 1);
switch(shift) { default:
case 0: data = (memory::cartram.read(addr) & 0xf0) | ((data & 15) << 0); break;
case 1: data = (memory::cartram.read(addr) & 0x0f) | ((data & 15) << 4); break;
}
} else {
//2bpp
unsigned shift = addr & 3;
addr = (addr >> 2) & (memory::cartram.size() - 1);
switch(shift) { default:
case 0: data = (memory::cartram.read(addr) & 0xfc) | ((data & 3) << 0); break;
case 1: data = (memory::cartram.read(addr) & 0xf3) | ((data & 3) << 2); break;
case 2: data = (memory::cartram.read(addr) & 0xcf) | ((data & 3) << 4); break;
case 3: data = (memory::cartram.read(addr) & 0x3f) | ((data & 3) << 6); break;
}
}
memory::cartram.write(addr, data);
}
#endif

View File

@@ -0,0 +1,55 @@
struct VBRBus : Bus {
void init();
};
struct SA1Bus : Bus {
void init();
};
struct VSPROM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
};
struct CPUIRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
};
struct SA1IRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
};
struct SA1BWRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
};
struct CC1BWRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
bool dma;
};
struct BitmapRAM : Memory {
unsigned size() const;
alwaysinline uint8 read(unsigned);
alwaysinline void write(unsigned, uint8);
};
namespace memory {
extern StaticRAM iram;
extern VSPROM vsprom;
extern CPUIRAM cpuiram;
extern SA1IRAM sa1iram;
extern SA1BWRAM sa1bwram;
extern CC1BWRAM cc1bwram;
extern BitmapRAM bitmapram;
};

139
asnes/chip/sa1/dma/dma.cpp Normal file
View File

@@ -0,0 +1,139 @@
#ifdef SA1_CPP
//====================
//direct data transfer
//====================
void SA1::dma_normal() {
while(mmio.dtc--) {
uint8 data = regs.mdr;
uint32 dsa = mmio.dsa++;
uint32 dda = mmio.dda++;
//source and destination cannot be the same
if(mmio.sd == DMA::SourceBWRAM && mmio.dd == DMA::DestBWRAM) continue;
if(mmio.sd == DMA::SourceIRAM && mmio.dd == DMA::DestIRAM ) continue;
switch(mmio.sd) {
case DMA::SourceROM: {
if((dsa & 0x408000) == 0x008000 || (dsa & 0xc00000) == 0xc00000) {
data = sa1bus.read(dsa);
}
} break;
case DMA::SourceBWRAM: {
if((dsa & 0x40e000) == 0x006000 || (dsa & 0xf00000) == 0x400000) {
data = sa1bus.read(dsa);
}
} break;
case DMA::SourceIRAM: {
data = memory::iram.read(dsa & 0x07ff);
} break;
}
switch(mmio.dd) {
case DMA::DestBWRAM: {
if((dda & 0x40e000) == 0x006000 || (dda & 0xf00000) == 0x400000) {
sa1bus.write(dda, data);
}
} break;
case DMA::DestIRAM: {
memory::iram.write(dda & 0x07ff, data);
} break;
}
}
mmio.dma_irqfl = true;
if(mmio.dma_irqen) mmio.dma_irqcl = 0;
}
//((byte & 6) << 3) + (byte & 1) explanation:
//transforms a byte index (0-7) into a planar index:
//result[] = { 0, 1, 16, 17, 32, 33, 48, 49 };
//works for 2bpp, 4bpp and 8bpp modes
//===========================
//type-1 character conversion
//===========================
void SA1::dma_cc1() {
memory::cc1bwram.dma = true;
mmio.chdma_irqfl = true;
if(mmio.chdma_irqen) {
mmio.chdma_irqcl = 0;
cpu.regs.irq = 1;
}
}
uint8 SA1::dma_cc1_read(unsigned addr) {
//16 bytes/char (2bpp); 32 bytes/char (4bpp); 64 bytes/char (8bpp)
unsigned charmask = (1 << (6 - mmio.dmacb)) - 1;
if((addr & charmask) == 0) {
//buffer next character to I-RAM
unsigned bpp = 2 << (2 - mmio.dmacb);
unsigned bpl = (8 << mmio.dmasize) >> mmio.dmacb;
unsigned bwmask = memory::cartram.size() - 1;
unsigned tile = ((addr - mmio.dsa) & bwmask) >> (6 - mmio.dmacb);
unsigned ty = (tile >> mmio.dmasize);
unsigned tx = tile & ((1 << mmio.dmasize) - 1);
unsigned bwaddr = mmio.dsa + ty * 8 * bpl + tx * bpp;
for(unsigned y = 0; y < 8; y++) {
uint64 data = 0;
for(unsigned byte = 0; byte < bpp; byte++) {
data |= (uint64)memory::cartram.read((bwaddr + byte) & bwmask) << (byte << 3);
}
bwaddr += bpl;
uint8 out[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
for(unsigned x = 0; x < 8; x++) {
out[0] |= (data & 1) << (7 - x); data >>= 1;
out[1] |= (data & 1) << (7 - x); data >>= 1;
if(mmio.dmacb == 2) continue;
out[2] |= (data & 1) << (7 - x); data >>= 1;
out[3] |= (data & 1) << (7 - x); data >>= 1;
if(mmio.dmacb == 1) continue;
out[4] |= (data & 1) << (7 - x); data >>= 1;
out[5] |= (data & 1) << (7 - x); data >>= 1;
out[6] |= (data & 1) << (7 - x); data >>= 1;
out[7] |= (data & 1) << (7 - x); data >>= 1;
}
for(unsigned byte = 0; byte < bpp; byte++) {
unsigned p = mmio.dda + (y << 1) + ((byte & 6) << 3) + (byte & 1);
memory::iram.write(p & 0x07ff, out[byte]);
}
}
}
return memory::iram.read((mmio.dda + (addr & charmask)) & 0x07ff);
}
//===========================
//type-2 character conversion
//===========================
void SA1::dma_cc2() {
//select register file index (0-7 or 8-15)
const uint8 *brf = &mmio.brf[(dma.line & 1) << 3];
unsigned bpp = 2 << (2 - mmio.dmacb);
unsigned addr = mmio.dda & 0x07ff;
addr &= ~((1 << (7 - mmio.dmacb)) - 1);
addr += (dma.line & 8) * bpp;
addr += (dma.line & 7) * 2;
for(unsigned byte = 0; byte < bpp; byte++) {
uint8 output = 0;
for(unsigned bit = 0; bit < 8; bit++) {
output |= ((brf[bit] >> byte) & 1) << (7 - bit);
}
memory::iram.write(addr + ((byte & 6) << 3) + (byte & 1), output);
}
dma.line = (dma.line + 1) & 15;
}
#endif

View File

@@ -0,0 +1,11 @@
struct DMA {
enum CDEN { DmaNormal = 0, DmaCharConversion = 1 };
enum SD { SourceROM = 0, SourceBWRAM = 1, SourceIRAM = 2 };
enum DD { DestIRAM = 0, DestBWRAM = 1 };
unsigned line;
} dma;
void dma_normal();
void dma_cc1();
uint8 dma_cc1_read(unsigned addr);
void dma_cc2();

View File

@@ -0,0 +1,24 @@
#ifdef SA1_CPP
//ROM, I-RAM and MMIO registers are accessed at ~10.74MHz (2 clock ticks)
//BW-RAM is accessed at ~5.37MHz (4 clock ticks)
//tick() == 2 clock ticks
//note: bus conflict delays are not emulated at this time
void SA1::op_io() {
tick();
}
uint8 SA1::op_read(unsigned addr) {
tick();
if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick();
return sa1bus.read(addr);
}
void SA1::op_write(unsigned addr, uint8 data) {
tick();
if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick();
sa1bus.write(addr, data);
}
#endif

View File

@@ -0,0 +1,5 @@
alwaysinline void op_io();
alwaysinline uint8 op_read(unsigned addr);
alwaysinline void op_write(unsigned addr, uint8 data);
uint8_t vbr_read(unsigned addr);

View File

@@ -0,0 +1,631 @@
#ifdef SA1_CPP
//BS-X flash carts, when present, are mapped to 0x400000+
Memory& SA1::mmio_access(unsigned &addr) {
if(!memory::bsxflash.data()) return memory::vsprom;
if(addr < 0x400000) return memory::vsprom;
addr &= 0x3fffff;
return bsxflash;
}
//(CCNT) SA-1 control
void SA1::mmio_w2200(uint8 data) {
if(mmio.sa1_resb && !(data & 0x80)) {
//reset SA-1 CPU
regs.pc.w = mmio.crv;
regs.pc.b = 0x00;
}
mmio.sa1_irq = (data & 0x80);
mmio.sa1_rdyb = (data & 0x40);
mmio.sa1_resb = (data & 0x20);
mmio.sa1_nmi = (data & 0x10);
mmio.smeg = (data & 0x0f);
if(mmio.sa1_irq) {
mmio.sa1_irqfl = true;
if(mmio.sa1_irqen) mmio.sa1_irqcl = 0;
}
if(mmio.sa1_nmi) {
mmio.sa1_nmifl = true;
if(mmio.sa1_nmien) mmio.sa1_nmicl = 0;
}
}
//(SIE) S-CPU interrupt enable
void SA1::mmio_w2201(uint8 data) {
if(!mmio.cpu_irqen && (data & 0x80)) {
if(mmio.cpu_irqfl) {
mmio.cpu_irqcl = 0;
cpu.regs.irq = 1;
}
}
if(!mmio.chdma_irqen && (data & 0x20)) {
if(mmio.chdma_irqfl) {
mmio.chdma_irqcl = 0;
cpu.regs.irq = 1;
}
}
mmio.cpu_irqen = (data & 0x80);
mmio.chdma_irqen = (data & 0x20);
}
//(SIC) S-CPU interrupt clear
void SA1::mmio_w2202(uint8 data) {
mmio.cpu_irqcl = (data & 0x80);
mmio.chdma_irqcl = (data & 0x20);
if(mmio.cpu_irqcl ) mmio.cpu_irqfl = false;
if(mmio.chdma_irqcl) mmio.chdma_irqfl = false;
if(!mmio.cpu_irqfl && !mmio.chdma_irqfl) cpu.regs.irq = 0;
}
//(CRV) SA-1 reset vector
void SA1::mmio_w2203(uint8 data) { mmio.crv = (mmio.crv & 0xff00) | data; }
void SA1::mmio_w2204(uint8 data) { mmio.crv = (data << 8) | (mmio.crv & 0xff); }
//(CNV) SA-1 NMI vector
void SA1::mmio_w2205(uint8 data) { mmio.cnv = (mmio.cnv & 0xff00) | data; }
void SA1::mmio_w2206(uint8 data) { mmio.cnv = (data << 8) | (mmio.cnv & 0xff); }
//(CIV) SA-1 IRQ vector
void SA1::mmio_w2207(uint8 data) { mmio.civ = (mmio.civ & 0xff00) | data; }
void SA1::mmio_w2208(uint8 data) { mmio.civ = (data << 8) | (mmio.civ & 0xff); }
//(SCNT) S-CPU control
void SA1::mmio_w2209(uint8 data) {
mmio.cpu_irq = (data & 0x80);
mmio.cpu_ivsw = (data & 0x40);
mmio.cpu_nvsw = (data & 0x10);
mmio.cmeg = (data & 0x0f);
if(mmio.cpu_irq) {
mmio.cpu_irqfl = true;
if(mmio.cpu_irqen) {
mmio.cpu_irqcl = 0;
cpu.regs.irq = 1;
}
}
}
//(CIE) SA-1 interrupt enable
void SA1::mmio_w220a(uint8 data) {
if(!mmio.sa1_irqen && (data & 0x80) && mmio.sa1_irqfl ) mmio.sa1_irqcl = 0;
if(!mmio.timer_irqen && (data & 0x40) && mmio.timer_irqfl) mmio.timer_irqcl = 0;
if(!mmio.dma_irqen && (data & 0x20) && mmio.dma_irqfl ) mmio.dma_irqcl = 0;
if(!mmio.sa1_nmien && (data & 0x10) && mmio.sa1_nmifl ) mmio.sa1_nmicl = 0;
mmio.sa1_irqen = (data & 0x80);
mmio.timer_irqen = (data & 0x40);
mmio.dma_irqen = (data & 0x20);
mmio.sa1_nmien = (data & 0x10);
}
//(CIC) SA-1 interrupt clear
void SA1::mmio_w220b(uint8 data) {
mmio.sa1_irqcl = (data & 0x80);
mmio.timer_irqcl = (data & 0x40);
mmio.dma_irqcl = (data & 0x20);
mmio.sa1_nmicl = (data & 0x10);
if(mmio.sa1_irqcl) mmio.sa1_irqfl = false;
if(mmio.timer_irqcl) mmio.timer_irqfl = false;
if(mmio.dma_irqcl) mmio.dma_irqfl = false;
if(mmio.sa1_nmicl) mmio.sa1_nmifl = false;
}
//(SNV) S-CPU NMI vector
void SA1::mmio_w220c(uint8 data) { mmio.snv = (mmio.snv & 0xff00) | data; }
void SA1::mmio_w220d(uint8 data) { mmio.snv = (data << 8) | (mmio.snv & 0xff); }
//(SIV) S-CPU IRQ vector
void SA1::mmio_w220e(uint8 data) { mmio.siv = (mmio.siv & 0xff00) | data; }
void SA1::mmio_w220f(uint8 data) { mmio.siv = (data << 8) | (mmio.siv & 0xff); }
//(TMC) H/V timer control
void SA1::mmio_w2210(uint8 data) {
mmio.hvselb = (data & 0x80);
mmio.ven = (data & 0x02);
mmio.hen = (data & 0x01);
}
//(CTR) SA-1 timer restart
void SA1::mmio_w2211(uint8 data) {
status.vcounter = 0;
status.hcounter = 0;
}
//(HCNT) H-count
void SA1::mmio_w2212(uint8 data) { mmio.hcnt = (mmio.hcnt & 0xff00) | (data << 0); }
void SA1::mmio_w2213(uint8 data) { mmio.hcnt = (mmio.hcnt & 0x00ff) | (data << 8); }
//(VCNT) V-count
void SA1::mmio_w2214(uint8 data) { mmio.vcnt = (mmio.vcnt & 0xff00) | (data << 0); }
void SA1::mmio_w2215(uint8 data) { mmio.vcnt = (mmio.vcnt & 0x00ff) | (data << 8); }
//(CXB) Super MMC bank C
void SA1::mmio_w2220(uint8 data) {
mmio.cbmode = (data & 0x80);
mmio.cb = (data & 0x07);
unsigned addr = mmio.cb << 20;
Memory &access = mmio_access(addr);
if(mmio.cbmode == 0) {
bus.map(Bus::MapMode::Linear, 0x00, 0x1f, 0x8000, 0xffff, memory::vsprom, 0x000000);
sa1bus.map(Bus::MapMode::Linear, 0x00, 0x1f, 0x8000, 0xffff, memory::vsprom, 0x000000);
} else {
bus.map(Bus::MapMode::Linear, 0x00, 0x1f, 0x8000, 0xffff, access, addr);
sa1bus.map(Bus::MapMode::Linear, 0x00, 0x1f, 0x8000, 0xffff, access, addr);
}
bus.map(Bus::MapMode::Linear, 0xc0, 0xcf, 0x0000, 0xffff, access, addr);
sa1bus.map(Bus::MapMode::Linear, 0xc0, 0xcf, 0x0000, 0xffff, access, addr);
}
//(DXB) Super MMC bank D
void SA1::mmio_w2221(uint8 data) {
mmio.dbmode = (data & 0x80);
mmio.db = (data & 0x07);
unsigned addr = mmio.db << 20;
Memory &access = mmio_access(addr);
if(mmio.dbmode == 0) {
bus.map(Bus::MapMode::Linear, 0x20, 0x3f, 0x8000, 0xffff, memory::vsprom, 0x100000);
sa1bus.map(Bus::MapMode::Linear, 0x20, 0x3f, 0x8000, 0xffff, memory::vsprom, 0x100000);
} else {
bus.map(Bus::MapMode::Linear, 0x20, 0x3f, 0x8000, 0xffff, access, addr);
sa1bus.map(Bus::MapMode::Linear, 0x20, 0x3f, 0x8000, 0xffff, access, addr);
}
bus.map(Bus::MapMode::Linear, 0xd0, 0xdf, 0x0000, 0xffff, access, addr);
sa1bus.map(Bus::MapMode::Linear, 0xd0, 0xdf, 0x0000, 0xffff, access, addr);
}
//(EXB) Super MMC bank E
void SA1::mmio_w2222(uint8 data) {
mmio.ebmode = (data & 0x80);
mmio.eb = (data & 0x07);
unsigned addr = mmio.eb << 20;
Memory &access = mmio_access(addr);
if(mmio.ebmode == 0) {
bus.map(Bus::MapMode::Linear, 0x80, 0x9f, 0x8000, 0xffff, memory::vsprom, 0x200000);
sa1bus.map(Bus::MapMode::Linear, 0x80, 0x9f, 0x8000, 0xffff, memory::vsprom, 0x200000);
} else {
bus.map(Bus::MapMode::Linear, 0x80, 0x9f, 0x8000, 0xffff, access, addr);
sa1bus.map(Bus::MapMode::Linear, 0x80, 0x9f, 0x8000, 0xffff, access, addr);
}
bus.map(Bus::MapMode::Linear, 0xe0, 0xef, 0x0000, 0xffff, access, addr);
sa1bus.map(Bus::MapMode::Linear, 0xe0, 0xef, 0x0000, 0xffff, access, addr);
}
//(FXB) Super MMC bank F
void SA1::mmio_w2223(uint8 data) {
mmio.fbmode = (data & 0x80);
mmio.fb = (data & 0x07);
unsigned addr = mmio.fb << 20;
Memory &access = mmio_access(addr);
if(mmio.fbmode == 0) {
bus.map(Bus::MapMode::Linear, 0xa0, 0xbf, 0x8000, 0xffff, memory::vsprom, 0x300000);
sa1bus.map(Bus::MapMode::Linear, 0xa0, 0xbf, 0x8000, 0xffff, memory::vsprom, 0x300000);
} else {
bus.map(Bus::MapMode::Linear, 0xa0, 0xbf, 0x8000, 0xffff, access, addr);
sa1bus.map(Bus::MapMode::Linear, 0xa0, 0xbf, 0x8000, 0xffff, access, addr);
}
bus.map(Bus::MapMode::Linear, 0xf0, 0xff, 0x0000, 0xffff, access, addr);
sa1bus.map(Bus::MapMode::Linear, 0xf0, 0xff, 0x0000, 0xffff, access, addr);
}
//(BMAPS) S-CPU BW-RAM address mapping
void SA1::mmio_w2224(uint8 data) {
mmio.sbm = (data & 0x1f);
bus.map(Bus::MapMode::Linear, 0x00, 0x3f, 0x6000, 0x7fff, memory::cc1bwram, mmio.sbm * 0x2000, 0x2000);
bus.map(Bus::MapMode::Linear, 0x80, 0xbf, 0x6000, 0x7fff, memory::cc1bwram, mmio.sbm * 0x2000, 0x2000);
}
//(BMAP) SA-1 BW-RAM address mapping
void SA1::mmio_w2225(uint8 data) {
mmio.sw46 = (data & 0x80);
mmio.cbm = (data & 0x7f);
if(mmio.sw46 == 0) {
//$[40-43]:[0000-ffff] x 32 projection
sa1bus.map(Bus::MapMode::Linear, 0x00, 0x3f, 0x6000, 0x7fff, memory::sa1bwram, (mmio.cbm & 0x1f) * 0x2000, 0x2000);
sa1bus.map(Bus::MapMode::Linear, 0x80, 0xbf, 0x6000, 0x7fff, memory::sa1bwram, (mmio.cbm & 0x1f) * 0x2000, 0x2000);
} else {
//$[60-6f]:[0000-ffff] x 128 projection
sa1bus.map(Bus::MapMode::Linear, 0x00, 0x3f, 0x6000, 0x7fff, memory::bitmapram, mmio.cbm * 0x2000, 0x2000);
sa1bus.map(Bus::MapMode::Linear, 0x80, 0xbf, 0x6000, 0x7fff, memory::bitmapram, mmio.cbm * 0x2000, 0x2000);
}
}
//(SWBE) S-CPU BW-RAM write enable
void SA1::mmio_w2226(uint8 data) {
mmio.swen = (data & 0x80);
}
//(CWBE) SA-1 BW-RAM write enable
void SA1::mmio_w2227(uint8 data) {
mmio.cwen = (data & 0x80);
}
//(BWPA) BW-RAM write-protected area
void SA1::mmio_w2228(uint8 data) {
mmio.bwp = (data & 0x0f);
}
//(SIWP) S-CPU I-RAM write protection
void SA1::mmio_w2229(uint8 data) {
mmio.siwp = data;
}
//(CIWP) SA-1 I-RAM write protection
void SA1::mmio_w222a(uint8 data) {
mmio.ciwp = data;
}
//(DCNT) DMA control
void SA1::mmio_w2230(uint8 data) {
mmio.dmaen = (data & 0x80);
mmio.dprio = (data & 0x40);
mmio.cden = (data & 0x20);
mmio.cdsel = (data & 0x10);
mmio.dd = (data & 0x04);
mmio.sd = (data & 0x03);
if(mmio.dmaen == 0) dma.line = 0;
}
//(CDMA) character conversion DMA parameters
void SA1::mmio_w2231(uint8 data) {
mmio.chdend = (data & 0x80);
mmio.dmasize = (data >> 2) & 7;
mmio.dmacb = (data & 0x03);
if(mmio.chdend) memory::cc1bwram.dma = false;
if(mmio.dmasize > 5) mmio.dmasize = 5;
if(mmio.dmacb > 2) mmio.dmacb = 2;
}
//(SDA) DMA source device start address
void SA1::mmio_w2232(uint8 data) { mmio.dsa = (mmio.dsa & 0xffff00) | (data << 0); }
void SA1::mmio_w2233(uint8 data) { mmio.dsa = (mmio.dsa & 0xff00ff) | (data << 8); }
void SA1::mmio_w2234(uint8 data) { mmio.dsa = (mmio.dsa & 0x00ffff) | (data << 16); }
//(DDA) DMA destination start address
void SA1::mmio_w2235(uint8 data) {
mmio.dda = (mmio.dda & 0xffff00) | (data << 0);
}
void SA1::mmio_w2236(uint8 data) {
mmio.dda = (mmio.dda & 0xff00ff) | (data << 8);
if(mmio.dmaen == true) {
if(mmio.cden == 0 && mmio.dd == DMA::DestIRAM) {
dma_normal();
} else if(mmio.cden == 1 && mmio.cdsel == 1) {
dma_cc1();
}
}
}
void SA1::mmio_w2237(uint8 data) {
mmio.dda = (mmio.dda & 0x00ffff) | (data << 16);
if(mmio.dmaen == true) {
if(mmio.cden == 0 && mmio.dd == DMA::DestBWRAM) {
dma_normal();
}
}
}
//(DTC) DMA terminal counter
void SA1::mmio_w2238(uint8 data) { mmio.dtc = (mmio.dtc & 0xff00) | (data << 0); }
void SA1::mmio_w2239(uint8 data) { mmio.dtc = (mmio.dtc & 0x00ff) | (data << 8); }
//(BBF) BW-RAM bitmap format
void SA1::mmio_w223f(uint8 data) {
mmio.bbf = (data & 0x80);
}
//(BRF) bitmap register files
void SA1::mmio_w2240(uint8 data) { mmio.brf[ 0] = data; }
void SA1::mmio_w2241(uint8 data) { mmio.brf[ 1] = data; }
void SA1::mmio_w2242(uint8 data) { mmio.brf[ 2] = data; }
void SA1::mmio_w2243(uint8 data) { mmio.brf[ 3] = data; }
void SA1::mmio_w2244(uint8 data) { mmio.brf[ 4] = data; }
void SA1::mmio_w2245(uint8 data) { mmio.brf[ 5] = data; }
void SA1::mmio_w2246(uint8 data) { mmio.brf[ 6] = data; }
void SA1::mmio_w2247(uint8 data) { mmio.brf[ 7] = data;
if(mmio.dmaen == true) {
if(mmio.cden == 1 && mmio.cdsel == 0) {
dma_cc2();
}
}
}
void SA1::mmio_w2248(uint8 data) { mmio.brf[ 8] = data; }
void SA1::mmio_w2249(uint8 data) { mmio.brf[ 9] = data; }
void SA1::mmio_w224a(uint8 data) { mmio.brf[10] = data; }
void SA1::mmio_w224b(uint8 data) { mmio.brf[11] = data; }
void SA1::mmio_w224c(uint8 data) { mmio.brf[12] = data; }
void SA1::mmio_w224d(uint8 data) { mmio.brf[13] = data; }
void SA1::mmio_w224e(uint8 data) { mmio.brf[14] = data; }
void SA1::mmio_w224f(uint8 data) { mmio.brf[15] = data;
if(mmio.dmaen == true) {
if(mmio.cden == 1 && mmio.cdsel == 0) {
dma_cc2();
}
}
}
//(MCNT) arithmetic control
void SA1::mmio_w2250(uint8 data) {
mmio.acm = (data & 0x02);
mmio.md = (data & 0x01);
if(mmio.acm) mmio.mr = 0;
}
//(MAL) multiplicand / dividend low
void SA1::mmio_w2251(uint8 data) {
mmio.ma = (mmio.ma & 0xff00) | data;
}
//(MAH) multiplicand / dividend high
void SA1::mmio_w2252(uint8 data) {
mmio.ma = (data << 8) | (mmio.ma & 0x00ff);
}
//(MBL) multiplier / divisor low
void SA1::mmio_w2253(uint8 data) {
mmio.mb = (mmio.mb & 0xff00) | data;
}
//(MBH) multiplier / divisor high
//multiplication / cumulative sum only resets MB
//division resets both MA and MB
void SA1::mmio_w2254(uint8 data) {
mmio.mb = (data << 8) | (mmio.mb & 0x00ff);
if(mmio.acm == 0) {
if(mmio.md == 0) {
//signed multiplication
mmio.mr = (int16)mmio.ma * (int16)mmio.mb;
mmio.mb = 0;
} else {
//unsigned division
if(mmio.mb == 0) {
mmio.mr = 0;
} else {
int16 quotient = (int16)mmio.ma / (uint16)mmio.mb;
uint16 remainder = (int16)mmio.ma % (uint16)mmio.mb;
mmio.mr = (remainder << 16) | quotient;
}
mmio.ma = 0;
mmio.mb = 0;
}
} else {
//sigma (accumulative multiplication)
mmio.mr += (int16)mmio.ma * (int16)mmio.mb;
mmio.overflow = (mmio.mr >= (1ULL << 40));
mmio.mr &= (1ULL << 40) - 1;
mmio.mb = 0;
}
}
//(VBD) variable-length bit processing
void SA1::mmio_w2258(uint8 data) {
mmio.hl = (data & 0x80);
mmio.vb = (data & 0x0f);
if(mmio.vb == 0) mmio.vb = 16;
if(mmio.hl == 0) {
//fixed mode
mmio.vbit += mmio.vb;
mmio.va += (mmio.vbit >> 3);
mmio.vbit &= 7;
}
}
//(VDA) variable-length bit game pak ROM start address
void SA1::mmio_w2259(uint8 data) { mmio.va = (mmio.va & 0xffff00) | (data << 0); }
void SA1::mmio_w225a(uint8 data) { mmio.va = (mmio.va & 0xff00ff) | (data << 8); }
void SA1::mmio_w225b(uint8 data) { mmio.va = (mmio.va & 0x00ffff) | (data << 16); mmio.vbit = 0; }
//(SFR) S-CPU flag read
uint8 SA1::mmio_r2300() {
uint8 data;
data = mmio.cpu_irqfl << 7;
data |= mmio.cpu_ivsw << 6;
data |= mmio.chdma_irqfl << 5;
data |= mmio.cpu_nvsw << 4;
data |= mmio.cmeg;
return data;
}
//(CFR) SA-1 flag read
uint8 SA1::mmio_r2301() {
uint8 data;
data = mmio.sa1_irqfl << 7;
data |= mmio.timer_irqfl << 6;
data |= mmio.dma_irqfl << 5;
data |= mmio.sa1_nmifl << 4;
data |= mmio.smeg;
return data;
}
//(HCR) hcounter read
uint8 SA1::mmio_r2302() {
//latch counters
mmio.hcr = status.hcounter >> 2;
mmio.vcr = status.vcounter;
return mmio.hcr >> 0; }
uint8 SA1::mmio_r2303() { return mmio.hcr >> 8; }
//(VCR) vcounter read
uint8 SA1::mmio_r2304() { return mmio.vcr >> 0; }
uint8 SA1::mmio_r2305() { return mmio.vcr >> 8; }
//(MR) arithmetic result
uint8 SA1::mmio_r2306() { return mmio.mr >> 0; }
uint8 SA1::mmio_r2307() { return mmio.mr >> 8; }
uint8 SA1::mmio_r2308() { return mmio.mr >> 16; }
uint8 SA1::mmio_r2309() { return mmio.mr >> 24; }
uint8 SA1::mmio_r230a() { return mmio.mr >> 32; }
//(OF) arithmetic overflow flag
uint8 SA1::mmio_r230b() { return mmio.overflow << 7; }
//(VDPL) variable-length data read port low
uint8 SA1::mmio_r230c() {
uint32 data = (vbrbus.read(mmio.va + 0) << 0)
| (vbrbus.read(mmio.va + 1) << 8)
| (vbrbus.read(mmio.va + 2) << 16);
data >>= mmio.vbit;
return data >> 0;
}
//(VDPH) variable-length data read port high
uint8 SA1::mmio_r230d() {
uint32 data = (vbrbus.read(mmio.va + 0) << 0)
| (vbrbus.read(mmio.va + 1) << 8)
| (vbrbus.read(mmio.va + 2) << 16);
data >>= mmio.vbit;
if(mmio.hl == 1) {
//auto-increment mode
mmio.vbit += mmio.vb;
mmio.va += (mmio.vbit >> 3);
mmio.vbit &= 7;
}
return data >> 8;
}
//(VC) version code register
uint8 SA1::mmio_r230e() {
return 0x01; //true value unknown
}
uint8 SA1::mmio_read(unsigned addr) {
(co_active() == cpu.thread ? cpu.synchronize_coprocessor() : synchronize_cpu());
addr &= 0xffff;
switch(addr) {
case 0x2300: return mmio_r2300();
case 0x2301: return mmio_r2301();
case 0x2302: return mmio_r2302();
case 0x2303: return mmio_r2303();
case 0x2304: return mmio_r2304();
case 0x2305: return mmio_r2305();
case 0x2306: return mmio_r2306();
case 0x2307: return mmio_r2307();
case 0x2308: return mmio_r2308();
case 0x2309: return mmio_r2309();
case 0x230a: return mmio_r230a();
case 0x230b: return mmio_r230b();
case 0x230c: return mmio_r230c();
case 0x230d: return mmio_r230d();
case 0x230e: return mmio_r230e();
}
return 0x00;
}
void SA1::mmio_write(unsigned addr, uint8 data) {
(co_active() == cpu.thread ? cpu.synchronize_coprocessor() : synchronize_cpu());
addr &= 0xffff;
switch(addr) {
case 0x2200: return mmio_w2200(data);
case 0x2201: return mmio_w2201(data);
case 0x2202: return mmio_w2202(data);
case 0x2203: return mmio_w2203(data);
case 0x2204: return mmio_w2204(data);
case 0x2205: return mmio_w2205(data);
case 0x2206: return mmio_w2206(data);
case 0x2207: return mmio_w2207(data);
case 0x2208: return mmio_w2208(data);
case 0x2209: return mmio_w2209(data);
case 0x220a: return mmio_w220a(data);
case 0x220b: return mmio_w220b(data);
case 0x220c: return mmio_w220c(data);
case 0x220d: return mmio_w220d(data);
case 0x220e: return mmio_w220e(data);
case 0x220f: return mmio_w220f(data);
case 0x2210: return mmio_w2210(data);
case 0x2211: return mmio_w2211(data);
case 0x2212: return mmio_w2212(data);
case 0x2213: return mmio_w2213(data);
case 0x2214: return mmio_w2214(data);
case 0x2215: return mmio_w2215(data);
case 0x2220: return mmio_w2220(data);
case 0x2221: return mmio_w2221(data);
case 0x2222: return mmio_w2222(data);
case 0x2223: return mmio_w2223(data);
case 0x2224: return mmio_w2224(data);
case 0x2225: return mmio_w2225(data);
case 0x2226: return mmio_w2226(data);
case 0x2227: return mmio_w2227(data);
case 0x2228: return mmio_w2228(data);
case 0x2229: return mmio_w2229(data);
case 0x222a: return mmio_w222a(data);
case 0x2230: return mmio_w2230(data);
case 0x2231: return mmio_w2231(data);
case 0x2232: return mmio_w2232(data);
case 0x2233: return mmio_w2233(data);
case 0x2234: return mmio_w2234(data);
case 0x2235: return mmio_w2235(data);
case 0x2236: return mmio_w2236(data);
case 0x2237: return mmio_w2237(data);
case 0x2238: return mmio_w2238(data);
case 0x2239: return mmio_w2239(data);
case 0x223f: return mmio_w223f(data);
case 0x2240: return mmio_w2240(data);
case 0x2241: return mmio_w2241(data);
case 0x2242: return mmio_w2242(data);
case 0x2243: return mmio_w2243(data);
case 0x2244: return mmio_w2244(data);
case 0x2245: return mmio_w2245(data);
case 0x2246: return mmio_w2246(data);
case 0x2247: return mmio_w2247(data);
case 0x2248: return mmio_w2248(data);
case 0x2249: return mmio_w2249(data);
case 0x224a: return mmio_w224a(data);
case 0x224b: return mmio_w224b(data);
case 0x224c: return mmio_w224c(data);
case 0x224d: return mmio_w224d(data);
case 0x224e: return mmio_w224e(data);
case 0x224f: return mmio_w224f(data);
case 0x2250: return mmio_w2250(data);
case 0x2251: return mmio_w2251(data);
case 0x2252: return mmio_w2252(data);
case 0x2253: return mmio_w2253(data);
case 0x2254: return mmio_w2254(data);
case 0x2258: return mmio_w2258(data);
case 0x2259: return mmio_w2259(data);
case 0x225a: return mmio_w225a(data);
case 0x225b: return mmio_w225b(data);
}
}
#endif

View File

@@ -0,0 +1,256 @@
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
Memory& mmio_access(unsigned &addr);
struct MMIO {
//$2200 CCNT
bool sa1_irq;
bool sa1_rdyb;
bool sa1_resb;
bool sa1_nmi;
uint8 smeg;
//$2201 SIE
bool cpu_irqen;
bool chdma_irqen;
//$2202 SIC
bool cpu_irqcl;
bool chdma_irqcl;
//$2203,$2204 CRV
uint16 crv;
//$2205,$2206 CNV
uint16 cnv;
//$2207,$2208 CIV
uint16 civ;
//$2209 SCNT
bool cpu_irq;
bool cpu_ivsw;
bool cpu_nvsw;
uint8 cmeg;
//$220a CIE
bool sa1_irqen;
bool timer_irqen;
bool dma_irqen;
bool sa1_nmien;
//$220b CIC
bool sa1_irqcl;
bool timer_irqcl;
bool dma_irqcl;
bool sa1_nmicl;
//$220c,$220d SNV
uint16 snv;
//$220e,$220f SIV
uint16 siv;
//$2210 TMC
bool hvselb;
bool ven;
bool hen;
//$2212,$2213
uint16 hcnt;
//$2214,$2215
uint16 vcnt;
//$2220 CXB
bool cbmode;
uint8 cb;
//$2221 DXB
bool dbmode;
uint8 db;
//$2222 EXB
bool ebmode;
uint8 eb;
//$2223 FXB
bool fbmode;
uint8 fb;
//$2224 BMAPS
uint8 sbm;
//$2225 BMAP
bool sw46;
uint8 cbm;
//$2226 SBWE
bool swen;
//$2227 CBWE
bool cwen;
//$2228 BWPA
uint8 bwp;
//$2229 SIWP
uint8 siwp;
//$222a CIWP
uint8 ciwp;
//$2230 DCNT
bool dmaen;
bool dprio;
bool cden;
bool cdsel;
bool dd;
uint8 sd;
//$2231 CDMA
bool chdend;
uint8 dmasize;
uint8 dmacb;
//$2232-$2234 SDA
uint32 dsa;
//$2235-$2237 DDA
uint32 dda;
//$2238,$2239 DTC
uint16 dtc;
//$223f BBF
bool bbf;
//$2240-224f BRF
uint8 brf[16];
//$2250 MCNT
bool acm;
bool md;
//$2251,$2252 MA
uint16 ma;
//$2253,$2254 MB
uint16 mb;
//$2258 VBD
bool hl;
uint8 vb;
//$2259-$225b VDA
uint32 va;
uint8 vbit;
//$2300 SFR
bool cpu_irqfl;
bool chdma_irqfl;
//$2301 CFR
bool sa1_irqfl;
bool timer_irqfl;
bool dma_irqfl;
bool sa1_nmifl;
//$2302,$2303 HCR
uint16 hcr;
//$2304,$2305 VCR
uint16 vcr;
//$2306-230a MR
uint64 mr;
//$230b OF
bool overflow;
} mmio;
void mmio_w2200(uint8); //CCNT
void mmio_w2201(uint8); //SIE
void mmio_w2202(uint8); //SIC
void mmio_w2203(uint8); //CRVL
void mmio_w2204(uint8); //CRVH
void mmio_w2205(uint8); //CNVL
void mmio_w2206(uint8); //CNVH
void mmio_w2207(uint8); //CIVL
void mmio_w2208(uint8); //CIVH
void mmio_w2209(uint8); //SCNT
void mmio_w220a(uint8); //CIE
void mmio_w220b(uint8); //CIC
void mmio_w220c(uint8); //SNVL
void mmio_w220d(uint8); //SNVH
void mmio_w220e(uint8); //SIVL
void mmio_w220f(uint8); //SIVH
void mmio_w2210(uint8); //TMC
void mmio_w2211(uint8); //CTR
void mmio_w2212(uint8); //HCNTL
void mmio_w2213(uint8); //HCNTH
void mmio_w2214(uint8); //VCNTL
void mmio_w2215(uint8); //VCNTH
void mmio_w2220(uint8); //CXB
void mmio_w2221(uint8); //DXB
void mmio_w2222(uint8); //EXB
void mmio_w2223(uint8); //FXB
void mmio_w2224(uint8); //BMAPS
void mmio_w2225(uint8); //BMAP
void mmio_w2226(uint8); //SBWE
void mmio_w2227(uint8); //CBWE
void mmio_w2228(uint8); //BWPA
void mmio_w2229(uint8); //SIWP
void mmio_w222a(uint8); //CIWP
void mmio_w2230(uint8); //DCNT
void mmio_w2231(uint8); //CDMA
void mmio_w2232(uint8); //SDAL
void mmio_w2233(uint8); //SDAH
void mmio_w2234(uint8); //SDAB
void mmio_w2235(uint8); //DDAL
void mmio_w2236(uint8); //DDAH
void mmio_w2237(uint8); //DDAB
void mmio_w2238(uint8); //DTCL
void mmio_w2239(uint8); //DTCH
void mmio_w223f(uint8); //BBF
void mmio_w2240(uint8); //BRF0
void mmio_w2241(uint8); //BRF1
void mmio_w2242(uint8); //BRF2
void mmio_w2243(uint8); //BRF3
void mmio_w2244(uint8); //BRF4
void mmio_w2245(uint8); //BRF5
void mmio_w2246(uint8); //BRF6
void mmio_w2247(uint8); //BRF7
void mmio_w2248(uint8); //BRF8
void mmio_w2249(uint8); //BRF9
void mmio_w224a(uint8); //BRFA
void mmio_w224b(uint8); //BRFB
void mmio_w224c(uint8); //BRFC
void mmio_w224d(uint8); //BRFD
void mmio_w224e(uint8); //BRFE
void mmio_w224f(uint8); //BRFF
void mmio_w2250(uint8); //MCNT
void mmio_w2251(uint8); //MAL
void mmio_w2252(uint8); //MAH
void mmio_w2253(uint8); //MBL
void mmio_w2254(uint8); //MBH
void mmio_w2258(uint8); //VBD
void mmio_w2259(uint8); //VDAL
void mmio_w225a(uint8); //VDAH
void mmio_w225b(uint8); //VDAB
uint8 mmio_r2300(); //SFR
uint8 mmio_r2301(); //CFR
uint8 mmio_r2302(); //HCRL
uint8 mmio_r2303(); //HCRH
uint8 mmio_r2304(); //VCRL
uint8 mmio_r2305(); //VCRH
uint8 mmio_r2306(); //MR [00-07]
uint8 mmio_r2307(); //MR [08-15]
uint8 mmio_r2308(); //MR [16-23]
uint8 mmio_r2309(); //MR [24-31]
uint8 mmio_r230a(); //MR [32-40]
uint8 mmio_r230b(); //OF
uint8 mmio_r230c(); //VDPL
uint8 mmio_r230d(); //VDPH
uint8 mmio_r230e(); //VC

329
asnes/chip/sa1/sa1.cpp Normal file
View File

@@ -0,0 +1,329 @@
#include <snes.hpp>
#define SA1_CPP
namespace SNES {
SA1 sa1;
#include "serialization.cpp"
#include "bus/bus.cpp"
#include "dma/dma.cpp"
#include "memory/memory.cpp"
#include "mmio/mmio.cpp"
void SA1::Enter() { sa1.enter(); }
void SA1::enter() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(mmio.sa1_rdyb || mmio.sa1_resb) {
//SA-1 co-processor is asleep
tick();
synchronize_cpu();
continue;
}
if(status.interrupt_pending) {
status.interrupt_pending = false;
interrupt(status.interrupt_vector);
}
(this->*opcode_table[op_readpc()])();
}
}
void SA1::last_cycle() {
if(mmio.sa1_nmi && !mmio.sa1_nmicl) {
status.interrupt_pending = true;
status.interrupt_vector = mmio.cnv;
mmio.sa1_nmifl = true;
mmio.sa1_nmicl = 1;
regs.wai = false;
} else if(!regs.p.i) {
if(mmio.timer_irqen && !mmio.timer_irqcl) {
status.interrupt_pending = true;
status.interrupt_vector = mmio.civ;
mmio.timer_irqfl = true;
regs.wai = false;
} else if(mmio.dma_irqen && !mmio.dma_irqcl) {
status.interrupt_pending = true;
status.interrupt_vector = mmio.civ;
mmio.dma_irqfl = true;
regs.wai = false;
} else if(mmio.sa1_irq && !mmio.sa1_irqcl) {
status.interrupt_pending = true;
status.interrupt_vector = mmio.civ;
mmio.sa1_irqfl = true;
regs.wai = false;
}
}
}
void SA1::interrupt(uint16 vector) {
SA1::op_read(regs.pc.d);
SA1::op_io();
if(!regs.e) op_writestack(regs.pc.b);
op_writestack(regs.pc.h);
op_writestack(regs.pc.l);
op_writestack(regs.e ? (regs.p & ~0x10) : regs.p);
regs.pc.w = vector;
regs.pc.b = 0x00;
regs.p.i = 1;
regs.p.d = 0;
}
bool SA1::interrupt_pending() {
return status.interrupt_pending;
}
void SA1::tick() {
step(2);
if(++status.tick_counter == 0) synchronize_cpu();
//adjust counters:
//note that internally, status counters are in clocks;
//whereas MMIO register counters are in dots (4 clocks = 1 dot)
if(mmio.hvselb == 0) {
//HV timer
status.hcounter += 2;
if(status.hcounter >= 1364) {
status.hcounter = 0;
if(++status.vcounter >= status.scanlines) status.vcounter = 0;
}
} else {
//linear timer
status.hcounter += 2;
status.vcounter += (status.hcounter >> 11);
status.hcounter &= 0x07ff;
status.vcounter &= 0x01ff;
}
//test counters for timer IRQ
switch((mmio.ven << 1) + (mmio.hen << 0)) {
case 0: break;
case 1: if(status.hcounter == (mmio.hcnt << 2)) trigger_irq(); break;
case 2: if(status.vcounter == mmio.vcnt && status.hcounter == 0) trigger_irq(); break;
case 3: if(status.vcounter == mmio.hcnt && status.hcounter == (mmio.hcnt << 2)) trigger_irq(); break;
}
}
void SA1::trigger_irq() {
mmio.timer_irqfl = true;
if(mmio.timer_irqen) mmio.timer_irqcl = 0;
}
void SA1::init() {
}
void SA1::enable() {
}
void SA1::power() {
regs.a = regs.x = regs.y = 0x0000;
regs.s = 0x01ff;
vbrbus.init();
sa1bus.init();
reset();
}
void SA1::reset() {
create(SA1::Enter, system.cpu_frequency());
memory::cc1bwram.dma = false;
for(unsigned addr = 0; addr < memory::iram.size(); addr++) {
memory::iram.write(addr, 0x00);
}
regs.pc.d = 0x000000;
regs.x.h = 0x00;
regs.y.h = 0x00;
regs.s.h = 0x01;
regs.d = 0x0000;
regs.db = 0x00;
regs.p = 0x34;
regs.e = 1;
regs.mdr = 0x00;
regs.wai = false;
CPUcore::update_table();
status.tick_counter = 0;
status.interrupt_pending = false;
status.interrupt_vector = 0x0000;
status.scanlines = (system.region() == System::Region::NTSC ? 262 : 312);
status.vcounter = 0;
status.hcounter = 0;
dma.line = 0;
//$2200 CCNT
mmio.sa1_irq = false;
mmio.sa1_rdyb = false;
mmio.sa1_resb = true;
mmio.sa1_nmi = false;
mmio.smeg = 0;
//$2201 SIE
mmio.cpu_irqen = false;
mmio.chdma_irqen = false;
//$2202 SIC
mmio.cpu_irqcl = false;
mmio.chdma_irqcl = false;
//$2203,$2204 CRV
mmio.crv = 0x0000;
//$2205,$2206 CNV
mmio.cnv = 0x0000;
//$2207,$2208 CIV
mmio.civ = 0x0000;
//$2209 SCNT
mmio.cpu_irq = false;
mmio.cpu_ivsw = false;
mmio.cpu_nvsw = false;
mmio.cmeg = 0;
//$220a CIE
mmio.sa1_irqen = false;
mmio.timer_irqen = false;
mmio.dma_irqen = false;
mmio.sa1_nmien = false;
//$220b CIC
mmio.sa1_irqcl = false;
mmio.timer_irqcl = false;
mmio.dma_irqcl = false;
mmio.sa1_nmicl = false;
//$220c,$220d SNV
mmio.snv = 0x0000;
//$220e,$220f SIV
mmio.siv = 0x0000;
//$2210
mmio.hvselb = false;
mmio.ven = false;
mmio.hen = false;
//$2212,$2213 HCNT
mmio.hcnt = 0x0000;
//$2214,$2215 VCNT
mmio.vcnt = 0x0000;
//$2220-2223 CXB, DXB, EXB, FXB
mmio.cbmode = 0;
mmio.dbmode = 0;
mmio.ebmode = 0;
mmio.fbmode = 0;
mmio.cb = 0x00;
mmio.db = 0x01;
mmio.eb = 0x02;
mmio.fb = 0x03;
//$2224 BMAPS
mmio.sbm = 0x00;
//$2225 BMAP
mmio.sw46 = false;
mmio.cbm = 0x00;
//$2226 SWBE
mmio.swen = false;
//$2227 CWBE
mmio.cwen = false;
//$2228 BWPA
mmio.bwp = 0x0f;
//$2229 SIWP
mmio.siwp = 0x00;
//$222a CIWP
mmio.ciwp = 0x00;
//$2230 DCNT
mmio.dmaen = false;
mmio.dprio = false;
mmio.cden = false;
mmio.cdsel = false;
mmio.dd = 0;
mmio.sd = 0;
//$2231 CDMA
mmio.chdend = false;
mmio.dmasize = 0;
mmio.dmacb = 0;
//$2232-$2234 SDA
mmio.dsa = 0x000000;
//$2235-$2237 DDA
mmio.dda = 0x000000;
//$2238,$2239 DTC
mmio.dtc = 0x0000;
//$223f BBF
mmio.bbf = 0;
//$2240-$224f BRF
for(unsigned i = 0; i < 16; i++) {
mmio.brf[i] = 0x00;
}
//$2250 MCNT
mmio.acm = 0;
mmio.md = 0;
//$2251,$2252 MA
mmio.ma = 0x0000;
//$2253,$2254 MB
mmio.mb = 0x0000;
//$2258 VBD
mmio.hl = false;
mmio.vb = 16;
//$2259-$225b
mmio.va = 0x000000;
mmio.vbit = 0;
//$2300 SFR
mmio.cpu_irqfl = false;
mmio.chdma_irqfl = false;
//$2301 CFR
mmio.sa1_irqfl = false;
mmio.timer_irqfl = false;
mmio.dma_irqfl = false;
mmio.sa1_nmifl = false;
//$2302,$2303 HCR
mmio.hcr = 0x0000;
//$2304,$2305 VCR
mmio.vcr = 0x0000;
//$2306-$230a MR
mmio.mr = 0;
//$230b
mmio.overflow = false;
}
SA1::SA1() {
}
}

39
asnes/chip/sa1/sa1.hpp Normal file
View File

@@ -0,0 +1,39 @@
#include "bus/bus.hpp"
class SA1 : public Coprocessor, public CPUcore, public MMIO {
public:
#include "dma/dma.hpp"
#include "memory/memory.hpp"
#include "mmio/mmio.hpp"
struct Status {
uint8 tick_counter;
bool interrupt_pending;
uint16 interrupt_vector;
uint16 scanlines;
uint16 vcounter;
uint16 hcounter;
} status;
static void Enter();
void enter();
void interrupt(uint16 vector);
void tick();
alwaysinline void trigger_irq();
alwaysinline void last_cycle();
alwaysinline bool interrupt_pending();
void init();
void enable();
void power();
void reset();
void serialize(serializer&);
SA1();
};
extern SA1 sa1;
extern SA1Bus sa1bus;

View File

@@ -0,0 +1,149 @@
#ifdef SA1_CPP
void SA1::serialize(serializer &s) {
Processor::serialize(s);
CPUcore::core_serialize(s);
//sa1.hpp
s.integer(status.tick_counter);
s.integer(status.interrupt_pending);
s.integer(status.interrupt_vector);
s.integer(status.scanlines);
s.integer(status.vcounter);
s.integer(status.hcounter);
//bus/bus.hpp
s.array(memory::iram.data(), memory::iram.size());
s.integer(memory::cc1bwram.dma);
//dma/dma.hpp
s.integer(dma.line);
//mmio/mmio.hpp
s.integer(mmio.sa1_irq);
s.integer(mmio.sa1_rdyb);
s.integer(mmio.sa1_resb);
s.integer(mmio.sa1_nmi);
s.integer(mmio.smeg);
s.integer(mmio.cpu_irqen);
s.integer(mmio.chdma_irqen);
s.integer(mmio.cpu_irqcl);
s.integer(mmio.chdma_irqcl);
s.integer(mmio.crv);
s.integer(mmio.cnv);
s.integer(mmio.civ);
s.integer(mmio.cpu_irq);
s.integer(mmio.cpu_ivsw);
s.integer(mmio.cpu_nvsw);
s.integer(mmio.cmeg);
s.integer(mmio.sa1_irqen);
s.integer(mmio.timer_irqen);
s.integer(mmio.dma_irqen);
s.integer(mmio.sa1_nmien);
s.integer(mmio.sa1_irqcl);
s.integer(mmio.timer_irqcl);
s.integer(mmio.dma_irqcl);
s.integer(mmio.sa1_nmicl);
s.integer(mmio.snv);
s.integer(mmio.siv);
s.integer(mmio.hvselb);
s.integer(mmio.ven);
s.integer(mmio.hen);
s.integer(mmio.hcnt);
s.integer(mmio.vcnt);
s.integer(mmio.cbmode);
s.integer(mmio.cb);
s.integer(mmio.dbmode);
s.integer(mmio.db);
s.integer(mmio.ebmode);
s.integer(mmio.eb);
s.integer(mmio.fbmode);
s.integer(mmio.fb);
s.integer(mmio.sbm);
s.integer(mmio.sw46);
s.integer(mmio.cbm);
s.integer(mmio.swen);
s.integer(mmio.cwen);
s.integer(mmio.bwp);
s.integer(mmio.siwp);
s.integer(mmio.ciwp);
s.integer(mmio.dmaen);
s.integer(mmio.dprio);
s.integer(mmio.cden);
s.integer(mmio.cdsel);
s.integer(mmio.dd);
s.integer(mmio.sd);
s.integer(mmio.chdend);
s.integer(mmio.dmasize);
s.integer(mmio.dmacb);
s.integer(mmio.dsa);
s.integer(mmio.dda);
s.integer(mmio.dtc);
s.integer(mmio.bbf);
s.array(mmio.brf);
s.integer(mmio.acm);
s.integer(mmio.md);
s.integer(mmio.ma);
s.integer(mmio.mb);
s.integer(mmio.hl);
s.integer(mmio.vb);
s.integer(mmio.va);
s.integer(mmio.vbit);
s.integer(mmio.cpu_irqfl);
s.integer(mmio.chdma_irqfl);
s.integer(mmio.sa1_irqfl);
s.integer(mmio.timer_irqfl);
s.integer(mmio.dma_irqfl);
s.integer(mmio.sa1_nmifl);
s.integer(mmio.hcr);
s.integer(mmio.vcr);
s.integer(mmio.mr);
s.integer(mmio.overflow);
}
#endif

154
asnes/chip/sdd1/sdd1.cpp Normal file
View File

@@ -0,0 +1,154 @@
#include <snes.hpp>
#define SDD1_CPP
namespace SNES {
SDD1 sdd1;
#include "serialization.cpp"
#include "sdd1emu.cpp"
void SDD1::init() {}
void SDD1::enable() {
//hook S-CPU DMA MMIO registers to gather information for struct dma[];
//buffer address and transfer size information for use in SDD1::read()
for(unsigned i = 0x4300; i <= 0x437f; i++) {
cpu_mmio[i & 0x7f] = memory::mmio.mmio[i - 0x2000];
memory::mmio.map(i, *this);
}
}
void SDD1::power() {
reset();
}
void SDD1::reset() {
sdd1_enable = 0x00;
xfer_enable = 0x00;
mmc[0] = 0 << 20;
mmc[1] = 1 << 20;
mmc[2] = 2 << 20;
mmc[3] = 3 << 20;
for(unsigned i = 0; i < 8; i++) {
dma[i].addr = 0;
dma[i].size = 0;
}
buffer.ready = false;
}
uint8 SDD1::mmio_read(unsigned addr) {
addr &= 0xffff;
if((addr & 0x4380) == 0x4300) {
return cpu_mmio[addr & 0x7f]->mmio_read(addr);
}
switch(addr) {
case 0x4804: return mmc[0] >> 20;
case 0x4805: return mmc[1] >> 20;
case 0x4806: return mmc[2] >> 20;
case 0x4807: return mmc[3] >> 20;
}
return cpu.regs.mdr;
}
void SDD1::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
if((addr & 0x4380) == 0x4300) {
unsigned channel = (addr >> 4) & 7;
switch(addr & 15) {
case 2: dma[channel].addr = (dma[channel].addr & 0xffff00) + (data << 0); break;
case 3: dma[channel].addr = (dma[channel].addr & 0xff00ff) + (data << 8); break;
case 4: dma[channel].addr = (dma[channel].addr & 0x00ffff) + (data << 16); break;
case 5: dma[channel].size = (dma[channel].size & 0xff00) + (data << 0); break;
case 6: dma[channel].size = (dma[channel].size & 0x00ff) + (data << 8); break;
}
return cpu_mmio[addr & 0x7f]->mmio_write(addr, data);
}
switch(addr) {
case 0x4800: sdd1_enable = data; break;
case 0x4801: xfer_enable = data; break;
case 0x4804: mmc[0] = data << 20; break;
case 0x4805: mmc[1] = data << 20; break;
case 0x4806: mmc[2] = data << 20; break;
case 0x4807: mmc[3] = data << 20; break;
}
}
//SDD1::read() is mapped to $[c0-ff]:[0000-ffff]
//the design is meant to be as close to the hardware design as possible, thus this code
//avoids adding S-DD1 hooks inside S-CPU::DMA emulation.
//
//the real S-DD1 cannot see $420b (DMA enable) writes, as they are not placed on the bus.
//however, $43x0-$43xf writes (DMAx channel settings) most likely do appear on the bus.
//the S-DD1 also requires fixed addresses for transfers, which wouldn't be necessary if
//it could see $420b writes (eg it would know when the transfer should begin.)
//
//the hardware needs a way to distinguish program code after $4801 writes from DMA
//decompression that follows soon after.
//
//the only plausible design for hardware would be for the S-DD1 to spy on DMAx settings,
//and begin spooling decompression on writes to $4801 that activate a channel. after that,
//it feeds decompressed data only when the ROM read address matches the DMA channel address.
//
//the actual S-DD1 transfer can occur on any channel, but it is most likely limited to
//one transfer per $420b write (for spooling purposes). however, this is not known for certain.
uint8 SDD1::read(unsigned addr) {
if(sdd1_enable & xfer_enable) {
//at least one channel has S-DD1 decompression enabled ...
for(unsigned i = 0; i < 8; i++) {
if(sdd1_enable & xfer_enable & (1 << i)) {
//S-DD1 always uses fixed transfer mode, so address will not change during transfer
if(addr == dma[i].addr) {
if(!buffer.ready) {
//first byte read for channel performs full decompression.
//this really should stream byte-by-byte, but it's not necessary since the size is known
buffer.offset = 0;
buffer.size = dma[i].size ? dma[i].size : 65536;
//sdd1emu calls this function; it needs to access uncompressed data;
//so temporarily disable decompression mode for decompress() call.
uint8 temp = sdd1_enable;
sdd1_enable = false;
sdd1emu.decompress(addr, buffer.size, buffer.data);
sdd1_enable = temp;
buffer.ready = true;
}
//fetch a decompressed byte; once buffer is depleted, disable channel and invalidate buffer
uint8 data = buffer.data[(uint16)buffer.offset++];
if(buffer.offset >= buffer.size) {
buffer.ready = false;
xfer_enable &= ~(1 << i);
}
return data;
} //address matched
} //channel enabled
} //channel loop
} //S-DD1 decompressor enabled
//S-DD1 decompression mode inactive; return ROM data
return memory::cartrom.read(mmc[(addr >> 20) & 3] + (addr & 0x0fffff));
}
void SDD1::write(unsigned addr, uint8 data) {
}
SDD1::SDD1() {
}
SDD1::~SDD1() {
}
}

41
asnes/chip/sdd1/sdd1.hpp Normal file
View File

@@ -0,0 +1,41 @@
#include "sdd1emu.hpp"
class SDD1 : public MMIO, public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
SDD1();
~SDD1();
private:
MMIO *cpu_mmio[0x80]; //bus spying hooks to glean information for struct dma[]
uint8 sdd1_enable; //channel bit-mask
uint8 xfer_enable; //channel bit-mask
unsigned mmc[4]; //memory map controller ROM indices
struct {
unsigned addr; //$43x2-$43x4 -- DMA transfer address
uint16 size; //$43x5-$43x6 -- DMA transfer size
} dma[8];
SDD1emu sdd1emu;
struct {
uint8 data[65536]; //pointer to decompressed S-DD1 data
uint16 offset; //read index into S-DD1 decompression buffer
unsigned size; //length of data buffer; reads decrement counter, set ready to false at 0
bool ready; //true when data[] is valid; false to invoke sdd1emu.decompress()
} buffer;
};
extern SDD1 sdd1;

452
asnes/chip/sdd1/sdd1emu.cpp Normal file
View File

@@ -0,0 +1,452 @@
#ifdef SDD1_CPP
/************************************************************************
S-DD1'algorithm emulation code
------------------------------
Author: Andreas Naive
Date: August 2003
Last update: October 2004
This code is Public Domain. There is no copyright holded by the author.
Said this, the author wish to explicitly emphasize his inalienable moral rights
over this piece of intelectual work and the previous research that made it
possible, as recognized by most of the copyright laws around the world.
This code is provided 'as-is', with no warranty, expressed or implied.
No responsability is assumed by the author in connection with it.
The author is greatly indebted with The Dumper, without whose help and
patience providing him with real S-DD1 data the research would have never been
possible. He also wish to note that in the very beggining of his research,
Neviksti had done some steps in the right direction. By last, the author is
indirectly indebted to all the people that worked and contributed in the
S-DD1 issue in the past.
An algorithm's documentation is available as a separate document.
The implementation is obvious when the algorithm is
understood.
************************************************************************/
typedef uint8 bool8;
#define SDD1_read(__addr) (sdd1.read(__addr))
////////////////////////////////////////////////////
void SDD1_IM::prepareDecomp(uint32 in_buf) {
byte_ptr=in_buf;
bit_count=4;
}
////////////////////////////////////////////////////
uint8 SDD1_IM::getCodeword(uint8 code_len) {
uint8 codeword;
uint8 comp_count;
codeword = (SDD1_read(byte_ptr))<<bit_count;
++bit_count;
if (codeword & 0x80) {
codeword |= SDD1_read(byte_ptr+1)>>(9-bit_count);
bit_count+=code_len;
}
if (bit_count & 0x08) {
byte_ptr++;
bit_count&=0x07;
}
return codeword;
}
//////////////////////////////////////////////////////
SDD1_GCD::SDD1_GCD(SDD1_IM *associatedIM) :
IM(associatedIM)
{
}
//////////////////////////////////////////////////////
void SDD1_GCD::getRunCount(uint8 code_num, uint8 *MPScount, bool8 *LPSind) {
const uint8 run_count[] = {
0x00, 0x00, 0x01, 0x00, 0x03, 0x01, 0x02, 0x00,
0x07, 0x03, 0x05, 0x01, 0x06, 0x02, 0x04, 0x00,
0x0f, 0x07, 0x0b, 0x03, 0x0d, 0x05, 0x09, 0x01,
0x0e, 0x06, 0x0a, 0x02, 0x0c, 0x04, 0x08, 0x00,
0x1f, 0x0f, 0x17, 0x07, 0x1b, 0x0b, 0x13, 0x03,
0x1d, 0x0d, 0x15, 0x05, 0x19, 0x09, 0x11, 0x01,
0x1e, 0x0e, 0x16, 0x06, 0x1a, 0x0a, 0x12, 0x02,
0x1c, 0x0c, 0x14, 0x04, 0x18, 0x08, 0x10, 0x00,
0x3f, 0x1f, 0x2f, 0x0f, 0x37, 0x17, 0x27, 0x07,
0x3b, 0x1b, 0x2b, 0x0b, 0x33, 0x13, 0x23, 0x03,
0x3d, 0x1d, 0x2d, 0x0d, 0x35, 0x15, 0x25, 0x05,
0x39, 0x19, 0x29, 0x09, 0x31, 0x11, 0x21, 0x01,
0x3e, 0x1e, 0x2e, 0x0e, 0x36, 0x16, 0x26, 0x06,
0x3a, 0x1a, 0x2a, 0x0a, 0x32, 0x12, 0x22, 0x02,
0x3c, 0x1c, 0x2c, 0x0c, 0x34, 0x14, 0x24, 0x04,
0x38, 0x18, 0x28, 0x08, 0x30, 0x10, 0x20, 0x00,
0x7f, 0x3f, 0x5f, 0x1f, 0x6f, 0x2f, 0x4f, 0x0f,
0x77, 0x37, 0x57, 0x17, 0x67, 0x27, 0x47, 0x07,
0x7b, 0x3b, 0x5b, 0x1b, 0x6b, 0x2b, 0x4b, 0x0b,
0x73, 0x33, 0x53, 0x13, 0x63, 0x23, 0x43, 0x03,
0x7d, 0x3d, 0x5d, 0x1d, 0x6d, 0x2d, 0x4d, 0x0d,
0x75, 0x35, 0x55, 0x15, 0x65, 0x25, 0x45, 0x05,
0x79, 0x39, 0x59, 0x19, 0x69, 0x29, 0x49, 0x09,
0x71, 0x31, 0x51, 0x11, 0x61, 0x21, 0x41, 0x01,
0x7e, 0x3e, 0x5e, 0x1e, 0x6e, 0x2e, 0x4e, 0x0e,
0x76, 0x36, 0x56, 0x16, 0x66, 0x26, 0x46, 0x06,
0x7a, 0x3a, 0x5a, 0x1a, 0x6a, 0x2a, 0x4a, 0x0a,
0x72, 0x32, 0x52, 0x12, 0x62, 0x22, 0x42, 0x02,
0x7c, 0x3c, 0x5c, 0x1c, 0x6c, 0x2c, 0x4c, 0x0c,
0x74, 0x34, 0x54, 0x14, 0x64, 0x24, 0x44, 0x04,
0x78, 0x38, 0x58, 0x18, 0x68, 0x28, 0x48, 0x08,
0x70, 0x30, 0x50, 0x10, 0x60, 0x20, 0x40, 0x00,
};
uint8 codeword=IM->getCodeword(code_num);
if (codeword & 0x80) {
*LPSind=1;
*MPScount=run_count[codeword>>(code_num^0x07)];
}
else {
*MPScount=(1<<code_num);
}
}
///////////////////////////////////////////////////////
SDD1_BG::SDD1_BG(SDD1_GCD *associatedGCD, uint8 code) :
GCD(associatedGCD), code_num(code)
{
}
///////////////////////////////////////////////
void SDD1_BG::prepareDecomp(void) {
MPScount=0;
LPSind=0;
}
//////////////////////////////////////////////
uint8 SDD1_BG::getBit(bool8 *endOfRun) {
uint8 bit;
if (!(MPScount || LPSind)) GCD->getRunCount(code_num, &MPScount, &LPSind);
if (MPScount) {
bit=0;
MPScount--;
}
else {
bit=1;
LPSind=0;
}
if (MPScount || LPSind) (*endOfRun)=0;
else (*endOfRun)=1;
return bit;
}
/////////////////////////////////////////////////
SDD1_PEM::SDD1_PEM(SDD1_BG *associatedBG0, SDD1_BG *associatedBG1,
SDD1_BG *associatedBG2, SDD1_BG *associatedBG3,
SDD1_BG *associatedBG4, SDD1_BG *associatedBG5,
SDD1_BG *associatedBG6, SDD1_BG *associatedBG7) {
BG[0]=associatedBG0;
BG[1]=associatedBG1;
BG[2]=associatedBG2;
BG[3]=associatedBG3;
BG[4]=associatedBG4;
BG[5]=associatedBG5;
BG[6]=associatedBG6;
BG[7]=associatedBG7;
}
/////////////////////////////////////////////////////////
const SDD1_PEM::state SDD1_PEM::evolution_table[]={
{ 0,25,25},
{ 0, 2, 1},
{ 0, 3, 1},
{ 0, 4, 2},
{ 0, 5, 3},
{ 1, 6, 4},
{ 1, 7, 5},
{ 1, 8, 6},
{ 1, 9, 7},
{ 2,10, 8},
{ 2,11, 9},
{ 2,12,10},
{ 2,13,11},
{ 3,14,12},
{ 3,15,13},
{ 3,16,14},
{ 3,17,15},
{ 4,18,16},
{ 4,19,17},
{ 5,20,18},
{ 5,21,19},
{ 6,22,20},
{ 6,23,21},
{ 7,24,22},
{ 7,24,23},
{ 0,26, 1},
{ 1,27, 2},
{ 2,28, 4},
{ 3,29, 8},
{ 4,30,12},
{ 5,31,16},
{ 6,32,18},
{ 7,24,22}
};
//////////////////////////////////////////////////////
void SDD1_PEM::prepareDecomp(void) {
for (uint8 i=0; i<32; i++) {
contextInfo[i].status=0;
contextInfo[i].MPS=0;
}
}
/////////////////////////////////////////////////////////
uint8 SDD1_PEM::getBit(uint8 context) {
bool8 endOfRun;
uint8 bit;
SDD1_ContextInfo *pContInfo=&contextInfo[context];
uint8 currStatus = pContInfo->status;
const state *pState=&SDD1_PEM::evolution_table[currStatus];
uint8 currentMPS=pContInfo->MPS;
bit=(BG[pState->code_num])->getBit(&endOfRun);
if (endOfRun)
if (bit) {
if (!(currStatus & 0xfe)) (pContInfo->MPS)^=0x01;
(pContInfo->status)=pState->nextIfLPS;
}
else
(pContInfo->status)=pState->nextIfMPS;
return bit^currentMPS;
}
//////////////////////////////////////////////////////////////
SDD1_CM::SDD1_CM(SDD1_PEM *associatedPEM) :
PEM(associatedPEM)
{
}
//////////////////////////////////////////////////////////////
void SDD1_CM::prepareDecomp(uint32 first_byte) {
bitplanesInfo = SDD1_read(first_byte) & 0xc0;
contextBitsInfo = SDD1_read(first_byte) & 0x30;
bit_number=0;
for (int i=0; i<8; i++) prevBitplaneBits[i]=0;
switch (bitplanesInfo) {
case 0x00:
currBitplane = 1;
break;
case 0x40:
currBitplane = 7;
break;
case 0x80:
currBitplane = 3;
}
}
/////////////////////////////////////////////////////////////
uint8 SDD1_CM::getBit(void) {
uint8 currContext;
uint16 *context_bits;
switch (bitplanesInfo) {
case 0x00:
currBitplane ^= 0x01;
break;
case 0x40:
currBitplane ^= 0x01;
if (!(bit_number & 0x7f)) currBitplane = ((currBitplane+2) & 0x07);
break;
case 0x80:
currBitplane ^= 0x01;
if (!(bit_number & 0x7f)) currBitplane ^= 0x02;
break;
case 0xc0:
currBitplane = bit_number & 0x07;
}
context_bits = &prevBitplaneBits[currBitplane];
currContext=(currBitplane & 0x01)<<4;
switch (contextBitsInfo) {
case 0x00:
currContext|=((*context_bits & 0x01c0)>>5)|(*context_bits & 0x0001);
break;
case 0x10:
currContext|=((*context_bits & 0x0180)>>5)|(*context_bits & 0x0001);
break;
case 0x20:
currContext|=((*context_bits & 0x00c0)>>5)|(*context_bits & 0x0001);
break;
case 0x30:
currContext|=((*context_bits & 0x0180)>>5)|(*context_bits & 0x0003);
}
uint8 bit=PEM->getBit(currContext);
*context_bits <<= 1;
*context_bits |= bit;
bit_number++;
return bit;
}
//////////////////////////////////////////////////
SDD1_OL::SDD1_OL(SDD1_CM *associatedCM) :
CM(associatedCM)
{
}
///////////////////////////////////////////////////
void SDD1_OL::prepareDecomp(uint32 first_byte, uint16 out_len, uint8 *out_buf) {
bitplanesInfo = SDD1_read(first_byte) & 0xc0;
length=out_len;
buffer=out_buf;
}
///////////////////////////////////////////////////
void SDD1_OL::launch(void) {
uint8 i;
uint8 register1, register2;
switch (bitplanesInfo) {
case 0x00:
case 0x40:
case 0x80:
i=1;
do { //if length==0, we output 2^16 bytes
if (!i) {
*(buffer++)=register2;
i=~i;
}
else {
for (register1=register2=0, i=0x80; i; i>>=1) {
if (CM->getBit()) register1 |= i;
if (CM->getBit()) register2 |= i;
}
*(buffer++)=register1;
}
} while (--length);
break;
case 0xc0:
do {
for (register1=0, i=0x01; i; i<<=1) {
if (CM->getBit()) register1 |= i;
}
*(buffer++)=register1;
} while (--length);
}
}
///////////////////////////////////////////////////////
void SDD1emu::decompress(uint32 in_buf, uint16 out_len, uint8 *out_buf) {
IM.prepareDecomp(in_buf);
BG0.prepareDecomp();
BG1.prepareDecomp();
BG2.prepareDecomp();
BG3.prepareDecomp();
BG4.prepareDecomp();
BG5.prepareDecomp();
BG6.prepareDecomp();
BG7.prepareDecomp();
PEM.prepareDecomp();
CM.prepareDecomp(in_buf);
OL.prepareDecomp(in_buf, out_len, out_buf);
OL.launch();
}
////////////////////////////////////////////////////////////
SDD1emu::SDD1emu() :
GCD(&IM),
BG0(&GCD, 0), BG1(&GCD, 1), BG2(&GCD, 2), BG3(&GCD, 3),
BG4(&GCD, 4), BG5(&GCD, 5), BG6(&GCD, 6), BG7(&GCD, 7),
PEM(&BG0, &BG1, &BG2, &BG3, &BG4, &BG5, &BG6, &BG7),
CM(&PEM),
OL(&CM)
{
}
///////////////////////////////////////////////////////////
#endif

164
asnes/chip/sdd1/sdd1emu.hpp Normal file
View File

@@ -0,0 +1,164 @@
/************************************************************************
S-DD1'algorithm emulation code
------------------------------
Author: Andreas Naive
Date: August 2003
Last update: October 2004
This code is Public Domain. There is no copyright holded by the author.
Said this, the author wish to explicitly emphasize his inalienable moral rights
over this piece of intelectual work and the previous research that made it
possible, as recognized by most of the copyright laws around the world.
This code is provided 'as-is', with no warranty, expressed or implied.
No responsability is assumed by the author in connection with it.
The author is greatly indebted with The Dumper, without whose help and
patience providing him with real S-DD1 data the research would have never been
possible. He also wish to note that in the very beggining of his research,
Neviksti had done some steps in the right direction. By last, the author is
indirectly indebted to all the people that worked and contributed in the
S-DD1 issue in the past.
An algorithm's documentation is available as a separate document.
The implementation is obvious when the algorithm is
understood.
************************************************************************/
#define bool8 uint8
class SDD1_IM { //Input Manager
public:
SDD1_IM(void) {}
void prepareDecomp(uint32 in_buf);
uint8 getCodeword(const uint8 code_len);
private:
uint32 byte_ptr;
uint8 bit_count;
};
////////////////////////////////////////////////////
class SDD1_GCD { //Golomb-Code Decoder
public:
SDD1_GCD(SDD1_IM *associatedIM);
void getRunCount(uint8 code_num, uint8 *MPScount, bool8 *LPSind);
private:
SDD1_IM *const IM;
};
//////////////////////////////////////////////////////
class SDD1_BG { // Bits Generator
public:
SDD1_BG(SDD1_GCD *associatedGCD, uint8 code);
void prepareDecomp(void);
uint8 getBit(bool8 *endOfRun);
private:
const uint8 code_num;
uint8 MPScount;
bool8 LPSind;
SDD1_GCD *const GCD;
};
////////////////////////////////////////////////
class SDD1_PEM { //Probability Estimation Module
public:
SDD1_PEM(SDD1_BG *associatedBG0, SDD1_BG *associatedBG1,
SDD1_BG *associatedBG2, SDD1_BG *associatedBG3,
SDD1_BG *associatedBG4, SDD1_BG *associatedBG5,
SDD1_BG *associatedBG6, SDD1_BG *associatedBG7);
void prepareDecomp(void);
uint8 getBit(uint8 context);
private:
struct state {
uint8 code_num;
uint8 nextIfMPS;
uint8 nextIfLPS;
};
static const state evolution_table[];
struct SDD1_ContextInfo {
uint8 status;
uint8 MPS;
} contextInfo[32];
SDD1_BG * BG[8];
};
///////////////////////////////////////////////////
class SDD1_CM { //Context Model
public:
SDD1_CM(SDD1_PEM *associatedPEM);
void prepareDecomp(uint32 first_byte);
uint8 getBit(void);
private:
uint8 bitplanesInfo;
uint8 contextBitsInfo;
uint8 bit_number;
uint8 currBitplane;
uint16 prevBitplaneBits[8];
SDD1_PEM *const PEM;
};
///////////////////////////////////////////////////
class SDD1_OL { //Output Logic
public:
SDD1_OL(SDD1_CM *associatedCM);
void prepareDecomp(uint32 first_byte, uint16 out_len, uint8 *out_buf);
void launch(void);
private:
uint8 bitplanesInfo;
uint16 length;
uint8 *buffer;
SDD1_CM *const CM;
};
/////////////////////////////////////////////////////////
class SDD1emu {
public:
SDD1emu(void);
void decompress(uint32 in_buf, uint16 out_len, uint8 *out_buf);
private:
SDD1_IM IM;
SDD1_GCD GCD;
SDD1_BG BG0; SDD1_BG BG1; SDD1_BG BG2; SDD1_BG BG3;
SDD1_BG BG4; SDD1_BG BG5; SDD1_BG BG6; SDD1_BG BG7;
SDD1_PEM PEM;
SDD1_CM CM;
SDD1_OL OL;
};
#undef bool8

View File

@@ -0,0 +1,19 @@
#ifdef SDD1_CPP
void SDD1::serialize(serializer &s) {
s.integer(sdd1_enable);
s.integer(xfer_enable);
s.array(mmc);
for(unsigned n = 0; n < 8; n++) {
s.integer(dma[n].addr);
s.integer(dma[n].size);
}
s.array(buffer.data);
s.integer(buffer.offset);
s.integer(buffer.size);
s.integer(buffer.ready);
}
#endif

View File

@@ -0,0 +1,97 @@
#include <snes.hpp>
#define SERIAL_CPP
namespace SNES {
Serial serial;
#include "serialization.cpp"
static void snesserial_tick(unsigned clocks) { serial.add_clocks(clocks * 8); }
static uint8 snesserial_read() { return serial.read(); }
static void snesserial_write(uint8 data) { serial.write(data); }
void Serial::Enter() { serial.enter(); }
void Serial::enter() {
latch = 0;
add_clocks(256 * 8); //warm-up
if(snesserial_main) snesserial_main(snesserial_tick, snesserial_read, snesserial_write);
while(true) add_clocks(frequency); //snesserial_main() fallback
}
void Serial::add_clocks(unsigned clocks) {
step(clocks);
synchronize_cpu();
}
uint8 Serial::read() {
while(cpu.joylatch() == 0) add_clocks(1);
while(cpu.joylatch() == 1) add_clocks(1);
add_clocks(4);
uint8 data = 0;
for(unsigned i = 0; i < 8; i++) {
add_clocks(8);
data = (cpu.joylatch() << 7) | (data >> 1);
}
return data;
}
void Serial::write(uint8 data) {
latch = 1;
add_clocks(8);
for(unsigned i = 0; i < 8; i++) {
latch = (data & 1) ^ 1;
data >>= 1;
add_clocks(8);
}
latch = 0;
add_clocks(8);
}
uint8 Serial::mmio_read(unsigned addr) {
cpu.synchronize_coprocessor();
switch(addr & 1) { default:
case 0: return r4016->mmio_read(addr);
case 1: return r4017->mmio_read(addr);
}
}
void Serial::mmio_write(unsigned addr, uint8 data) {
cpu.synchronize_coprocessor();
switch(addr & 1) { default:
case 0: r4016->mmio_write(addr, data); break;
case 1: r4017->mmio_write(addr, data); break;
}
}
void Serial::init() {
}
void Serial::enable() {
r4016 = memory::mmio.mmio[0x4016 - 0x2000];
r4017 = memory::mmio.mmio[0x4017 - 0x2000];
memory::mmio.mmio[0x4016 - 0x2000] = this;
memory::mmio.mmio[0x4017 - 0x2000] = this;
if(opened()) close();
string name = notdir(cartridge.basename());
string path = dir(cartridge.basename());
if(open(name, path)) {
snesserial_main = sym("snesserial_main");
}
}
void Serial::power() {
reset();
}
void Serial::reset() {
create(Serial::Enter, cartridge.serial_baud_rate() * 8);
}
}

View File

@@ -0,0 +1,25 @@
class Serial : public Coprocessor, public MMIO, public library, public property<Serial> {
public:
static void Enter();
void enter();
void init();
void enable();
void power();
void reset();
void serialize(serializer&);
readonly<bool> latch;
void add_clocks(unsigned clocks);
uint8 read();
void write(uint8 data);
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
private:
MMIO *r4016, *r4017;
function<void (void (*)(unsigned), uint8_t (*)(), void (*)(uint8_t))> snesserial_main;
};
extern Serial serial;

View File

@@ -0,0 +1,8 @@
#ifdef SERIAL_CPP
void Serial::serialize(serializer &s) {
Processor::serialize(s);
s.integer((bool&)latch);
}
#endif

View File

@@ -0,0 +1,511 @@
#ifdef SPC7110_CPP
uint8 SPC7110Decomp::read() {
if(decomp_buffer_length == 0) {
//decompress at least (decomp_buffer_size / 2) bytes to the buffer
switch(decomp_mode) {
case 0: mode0(false); break;
case 1: mode1(false); break;
case 2: mode2(false); break;
default: return 0x00;
}
}
uint8 data = decomp_buffer[decomp_buffer_rdoffset++];
decomp_buffer_rdoffset &= decomp_buffer_size - 1;
decomp_buffer_length--;
return data;
}
void SPC7110Decomp::write(uint8 data) {
decomp_buffer[decomp_buffer_wroffset++] = data;
decomp_buffer_wroffset &= decomp_buffer_size - 1;
decomp_buffer_length++;
}
uint8 SPC7110Decomp::dataread() {
unsigned size = memory::cartrom.size() - cartridge.spc7110_data_rom_offset();
while(decomp_offset >= size) decomp_offset -= size;
return memory::cartrom.read(cartridge.spc7110_data_rom_offset() + decomp_offset++);
}
void SPC7110Decomp::init(unsigned mode, unsigned offset, unsigned index) {
decomp_mode = mode;
decomp_offset = offset;
decomp_buffer_rdoffset = 0;
decomp_buffer_wroffset = 0;
decomp_buffer_length = 0;
//reset context states
for(unsigned i = 0; i < 32; i++) {
context[i].index = 0;
context[i].invert = 0;
}
switch(decomp_mode) {
case 0: mode0(true); break;
case 1: mode1(true); break;
case 2: mode2(true); break;
}
//decompress up to requested output data index
while(index--) read();
}
//
void SPC7110Decomp::mode0(bool init) {
static uint8 val, in, span;
static int out, inverts, lps, in_count;
if(init == true) {
out = inverts = lps = 0;
span = 0xff;
val = dataread();
in = dataread();
in_count = 8;
return;
}
while(decomp_buffer_length < (decomp_buffer_size >> 1)) {
for(unsigned bit = 0; bit < 8; bit++) {
//get context
uint8 mask = (1 << (bit & 3)) - 1;
uint8 con = mask + ((inverts & mask) ^ (lps & mask));
if(bit > 3) con += 15;
//get prob and mps
unsigned prob = probability(con);
unsigned mps = (((out >> 15) & 1) ^ context[con].invert);
//get bit
unsigned flag_lps;
if(val <= span - prob) { //mps
span = span - prob;
out = (out << 1) + mps;
flag_lps = 0;
} else { //lps
val = val - (span - (prob - 1));
span = prob - 1;
out = (out << 1) + 1 - mps;
flag_lps = 1;
}
//renormalize
unsigned shift = 0;
while(span < 0x7f) {
shift++;
span = (span << 1) + 1;
val = (val << 1) + (in >> 7);
in <<= 1;
if(--in_count == 0) {
in = dataread();
in_count = 8;
}
}
//update processing info
lps = (lps << 1) + flag_lps;
inverts = (inverts << 1) + context[con].invert;
//update context state
if(flag_lps & toggle_invert(con)) context[con].invert ^= 1;
if(flag_lps) context[con].index = next_lps(con);
else if(shift) context[con].index = next_mps(con);
}
//save byte
write(out);
}
}
void SPC7110Decomp::mode1(bool init) {
static int pixelorder[4], realorder[4];
static uint8 in, val, span;
static int out, inverts, lps, in_count;
if(init == true) {
for(unsigned i = 0; i < 4; i++) pixelorder[i] = i;
out = inverts = lps = 0;
span = 0xff;
val = dataread();
in = dataread();
in_count = 8;
return;
}
while(decomp_buffer_length < (decomp_buffer_size >> 1)) {
for(unsigned pixel = 0; pixel < 8; pixel++) {
//get first symbol context
unsigned a = ((out >> (1 * 2)) & 3);
unsigned b = ((out >> (7 * 2)) & 3);
unsigned c = ((out >> (8 * 2)) & 3);
unsigned con = (a == b) ? (b != c) : (b == c) ? 2 : 4 - (a == c);
//update pixel order
unsigned m, n;
for(m = 0; m < 4; m++) if(pixelorder[m] == a) break;
for(n = m; n > 0; n--) pixelorder[n] = pixelorder[n - 1];
pixelorder[0] = a;
//calculate the real pixel order
for(m = 0; m < 4; m++) realorder[m] = pixelorder[m];
//rotate reference pixel c value to top
for(m = 0; m < 4; m++) if(realorder[m] == c) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = c;
//rotate reference pixel b value to top
for(m = 0; m < 4; m++) if(realorder[m] == b) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = b;
//rotate reference pixel a value to top
for(m = 0; m < 4; m++) if(realorder[m] == a) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = a;
//get 2 symbols
for(unsigned bit = 0; bit < 2; bit++) {
//get prob
unsigned prob = probability(con);
//get symbol
unsigned flag_lps;
if(val <= span - prob) { //mps
span = span - prob;
flag_lps = 0;
} else { //lps
val = val - (span - (prob - 1));
span = prob - 1;
flag_lps = 1;
}
//renormalize
unsigned shift = 0;
while(span < 0x7f) {
shift++;
span = (span << 1) + 1;
val = (val << 1) + (in >> 7);
in <<= 1;
if(--in_count == 0) {
in = dataread();
in_count = 8;
}
}
//update processing info
lps = (lps << 1) + flag_lps;
inverts = (inverts << 1) + context[con].invert;
//update context state
if(flag_lps & toggle_invert(con)) context[con].invert ^= 1;
if(flag_lps) context[con].index = next_lps(con);
else if(shift) context[con].index = next_mps(con);
//get next context
con = 5 + (con << 1) + ((lps ^ inverts) & 1);
}
//get pixel
b = realorder[(lps ^ inverts) & 3];
out = (out << 2) + b;
}
//turn pixel data into bitplanes
unsigned data = morton_2x8(out);
write(data >> 8);
write(data >> 0);
}
}
void SPC7110Decomp::mode2(bool init) {
static int pixelorder[16], realorder[16];
static uint8 bitplanebuffer[16], buffer_index;
static uint8 in, val, span;
static int out0, out1, inverts, lps, in_count;
if(init == true) {
for(unsigned i = 0; i < 16; i++) pixelorder[i] = i;
buffer_index = 0;
out0 = out1 = inverts = lps = 0;
span = 0xff;
val = dataread();
in = dataread();
in_count = 8;
return;
}
while(decomp_buffer_length < (decomp_buffer_size >> 1)) {
for(unsigned pixel = 0; pixel < 8; pixel++) {
//get first symbol context
unsigned a = ((out0 >> (0 * 4)) & 15);
unsigned b = ((out0 >> (7 * 4)) & 15);
unsigned c = ((out1 >> (0 * 4)) & 15);
unsigned con = 0;
unsigned refcon = (a == b) ? (b != c) : (b == c) ? 2 : 4 - (a == c);
//update pixel order
unsigned m, n;
for(m = 0; m < 16; m++) if(pixelorder[m] == a) break;
for(n = m; n > 0; n--) pixelorder[n] = pixelorder[n - 1];
pixelorder[0] = a;
//calculate the real pixel order
for(m = 0; m < 16; m++) realorder[m] = pixelorder[m];
//rotate reference pixel c value to top
for(m = 0; m < 16; m++) if(realorder[m] == c) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = c;
//rotate reference pixel b value to top
for(m = 0; m < 16; m++) if(realorder[m] == b) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = b;
//rotate reference pixel a value to top
for(m = 0; m < 16; m++) if(realorder[m] == a) break;
for(n = m; n > 0; n--) realorder[n] = realorder[n - 1];
realorder[0] = a;
//get 4 symbols
for(unsigned bit = 0; bit < 4; bit++) {
//get prob
unsigned prob = probability(con);
//get symbol
unsigned flag_lps;
if(val <= span - prob) { //mps
span = span - prob;
flag_lps = 0;
} else { //lps
val = val - (span - (prob - 1));
span = prob - 1;
flag_lps = 1;
}
//renormalize
unsigned shift = 0;
while(span < 0x7f) {
shift++;
span = (span << 1) + 1;
val = (val << 1) + (in >> 7);
in <<= 1;
if(--in_count == 0) {
in = dataread();
in_count = 8;
}
}
//update processing info
lps = (lps << 1) + flag_lps;
unsigned invertbit = context[con].invert;
inverts = (inverts << 1) + invertbit;
//update context state
if(flag_lps & toggle_invert(con)) context[con].invert ^= 1;
if(flag_lps) context[con].index = next_lps(con);
else if(shift) context[con].index = next_mps(con);
//get next context
con = mode2_context_table[con][flag_lps ^ invertbit] + (con == 1 ? refcon : 0);
}
//get pixel
b = realorder[(lps ^ inverts) & 0x0f];
out1 = (out1 << 4) + ((out0 >> 28) & 0x0f);
out0 = (out0 << 4) + b;
}
//convert pixel data into bitplanes
unsigned data = morton_4x8(out0);
write(data >> 24);
write(data >> 16);
bitplanebuffer[buffer_index++] = data >> 8;
bitplanebuffer[buffer_index++] = data >> 0;
if(buffer_index == 16) {
for(unsigned i = 0; i < 16; i++) write(bitplanebuffer[i]);
buffer_index = 0;
}
}
}
//
const uint8 SPC7110Decomp::evolution_table[53][4] = {
//{ prob, nextlps, nextmps, toggle invert },
{ 0x5a, 1, 1, 1 },
{ 0x25, 6, 2, 0 },
{ 0x11, 8, 3, 0 },
{ 0x08, 10, 4, 0 },
{ 0x03, 12, 5, 0 },
{ 0x01, 15, 5, 0 },
{ 0x5a, 7, 7, 1 },
{ 0x3f, 19, 8, 0 },
{ 0x2c, 21, 9, 0 },
{ 0x20, 22, 10, 0 },
{ 0x17, 23, 11, 0 },
{ 0x11, 25, 12, 0 },
{ 0x0c, 26, 13, 0 },
{ 0x09, 28, 14, 0 },
{ 0x07, 29, 15, 0 },
{ 0x05, 31, 16, 0 },
{ 0x04, 32, 17, 0 },
{ 0x03, 34, 18, 0 },
{ 0x02, 35, 5, 0 },
{ 0x5a, 20, 20, 1 },
{ 0x48, 39, 21, 0 },
{ 0x3a, 40, 22, 0 },
{ 0x2e, 42, 23, 0 },
{ 0x26, 44, 24, 0 },
{ 0x1f, 45, 25, 0 },
{ 0x19, 46, 26, 0 },
{ 0x15, 25, 27, 0 },
{ 0x11, 26, 28, 0 },
{ 0x0e, 26, 29, 0 },
{ 0x0b, 27, 30, 0 },
{ 0x09, 28, 31, 0 },
{ 0x08, 29, 32, 0 },
{ 0x07, 30, 33, 0 },
{ 0x05, 31, 34, 0 },
{ 0x04, 33, 35, 0 },
{ 0x04, 33, 36, 0 },
{ 0x03, 34, 37, 0 },
{ 0x02, 35, 38, 0 },
{ 0x02, 36, 5, 0 },
{ 0x58, 39, 40, 1 },
{ 0x4d, 47, 41, 0 },
{ 0x43, 48, 42, 0 },
{ 0x3b, 49, 43, 0 },
{ 0x34, 50, 44, 0 },
{ 0x2e, 51, 45, 0 },
{ 0x29, 44, 46, 0 },
{ 0x25, 45, 24, 0 },
{ 0x56, 47, 48, 1 },
{ 0x4f, 47, 49, 0 },
{ 0x47, 48, 50, 0 },
{ 0x41, 49, 51, 0 },
{ 0x3c, 50, 52, 0 },
{ 0x37, 51, 43, 0 },
};
const uint8 SPC7110Decomp::mode2_context_table[32][2] = {
//{ next 0, next 1 },
{ 1, 2 },
{ 3, 8 },
{ 13, 14 },
{ 15, 16 },
{ 17, 18 },
{ 19, 20 },
{ 21, 22 },
{ 23, 24 },
{ 25, 26 },
{ 25, 26 },
{ 25, 26 },
{ 25, 26 },
{ 25, 26 },
{ 27, 28 },
{ 29, 30 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
{ 31, 31 },
};
uint8 SPC7110Decomp::probability (unsigned n) { return evolution_table[context[n].index][0]; }
uint8 SPC7110Decomp::next_lps (unsigned n) { return evolution_table[context[n].index][1]; }
uint8 SPC7110Decomp::next_mps (unsigned n) { return evolution_table[context[n].index][2]; }
bool SPC7110Decomp::toggle_invert(unsigned n) { return evolution_table[context[n].index][3]; }
unsigned SPC7110Decomp::morton_2x8(unsigned data) {
//reverse morton lookup: de-interleave two 8-bit values
//15, 13, 11, 9, 7, 5, 3, 1 -> 15- 8
//14, 12, 10, 8, 6, 4, 2, 0 -> 7- 0
return morton16[0][(data >> 0) & 255] + morton16[1][(data >> 8) & 255];
}
unsigned SPC7110Decomp::morton_4x8(unsigned data) {
//reverse morton lookup: de-interleave four 8-bit values
//31, 27, 23, 19, 15, 11, 7, 3 -> 31-24
//30, 26, 22, 18, 14, 10, 6, 2 -> 23-16
//29, 25, 21, 17, 13, 9, 5, 1 -> 15- 8
//28, 24, 20, 16, 12, 8, 4, 0 -> 7- 0
return morton32[0][(data >> 0) & 255] + morton32[1][(data >> 8) & 255]
+ morton32[2][(data >> 16) & 255] + morton32[3][(data >> 24) & 255];
}
//
void SPC7110Decomp::reset() {
//mode 3 is invalid; this is treated as a special case to always return 0x00
//set to mode 3 so that reading decomp port before starting first decomp will return 0x00
decomp_mode = 3;
decomp_buffer_rdoffset = 0;
decomp_buffer_wroffset = 0;
decomp_buffer_length = 0;
}
SPC7110Decomp::SPC7110Decomp() {
decomp_buffer = new uint8_t[decomp_buffer_size];
reset();
//initialize reverse morton lookup tables
for(unsigned i = 0; i < 256; i++) {
#define map(x, y) (((i >> x) & 1) << y)
//2x8-bit
morton16[1][i] = map(7, 15) + map(6, 7) + map(5, 14) + map(4, 6)
+ map(3, 13) + map(2, 5) + map(1, 12) + map(0, 4);
morton16[0][i] = map(7, 11) + map(6, 3) + map(5, 10) + map(4, 2)
+ map(3, 9) + map(2, 1) + map(1, 8) + map(0, 0);
//4x8-bit
morton32[3][i] = map(7, 31) + map(6, 23) + map(5, 15) + map(4, 7)
+ map(3, 30) + map(2, 22) + map(1, 14) + map(0, 6);
morton32[2][i] = map(7, 29) + map(6, 21) + map(5, 13) + map(4, 5)
+ map(3, 28) + map(2, 20) + map(1, 12) + map(0, 4);
morton32[1][i] = map(7, 27) + map(6, 19) + map(5, 11) + map(4, 3)
+ map(3, 26) + map(2, 18) + map(1, 10) + map(0, 2);
morton32[0][i] = map(7, 25) + map(6, 17) + map(5, 9) + map(4, 1)
+ map(3, 24) + map(2, 16) + map(1, 8) + map(0, 0);
#undef map
}
}
SPC7110Decomp::~SPC7110Decomp() {
delete[] decomp_buffer;
}
#endif

View File

@@ -0,0 +1,46 @@
class SPC7110Decomp {
public:
uint8 read();
void init(unsigned mode, unsigned offset, unsigned index);
void reset();
void serialize(serializer&);
SPC7110Decomp();
~SPC7110Decomp();
private:
unsigned decomp_mode;
unsigned decomp_offset;
//read() will spool chunks half the size of decomp_buffer_size
enum { decomp_buffer_size = 64 }; //must be >= 64, and must be a power of two
uint8 *decomp_buffer;
unsigned decomp_buffer_rdoffset;
unsigned decomp_buffer_wroffset;
unsigned decomp_buffer_length;
void write(uint8 data);
uint8 dataread();
void mode0(bool init);
void mode1(bool init);
void mode2(bool init);
static const uint8 evolution_table[53][4];
static const uint8 mode2_context_table[32][2];
struct ContextState {
uint8 index;
uint8 invert;
} context[32];
uint8 probability(unsigned n);
uint8 next_lps(unsigned n);
uint8 next_mps(unsigned n);
bool toggle_invert(unsigned n);
unsigned morton16[2][256];
unsigned morton32[4][256];
unsigned morton_2x8(unsigned data);
unsigned morton_4x8(unsigned data);
};

View File

@@ -0,0 +1,81 @@
#ifdef SPC7110_CPP
void SPC7110Decomp::serialize(serializer &s) {
s.integer(decomp_mode);
s.integer(decomp_offset);
s.array(decomp_buffer, decomp_buffer_size);
s.integer(decomp_buffer_rdoffset);
s.integer(decomp_buffer_wroffset);
s.integer(decomp_buffer_length);
for(unsigned n = 0; n < 32; n++) {
s.integer(context[n].index);
s.integer(context[n].invert);
}
}
void SPC7110::serialize(serializer &s) {
s.integer(r4801);
s.integer(r4802);
s.integer(r4803);
s.integer(r4804);
s.integer(r4805);
s.integer(r4806);
s.integer(r4807);
s.integer(r4808);
s.integer(r4809);
s.integer(r480a);
s.integer(r480b);
s.integer(r480c);
decomp.serialize(s);
s.integer(r4811);
s.integer(r4812);
s.integer(r4813);
s.integer(r4814);
s.integer(r4815);
s.integer(r4816);
s.integer(r4817);
s.integer(r4818);
s.integer(r481x);
s.integer(r4814_latch);
s.integer(r4815_latch);
s.integer(r4820);
s.integer(r4821);
s.integer(r4822);
s.integer(r4823);
s.integer(r4824);
s.integer(r4825);
s.integer(r4826);
s.integer(r4827);
s.integer(r4828);
s.integer(r4829);
s.integer(r482a);
s.integer(r482b);
s.integer(r482c);
s.integer(r482d);
s.integer(r482e);
s.integer(r482f);
s.integer(r4830);
s.integer(r4831);
s.integer(r4832);
s.integer(r4833);
s.integer(r4834);
s.integer(dx_offset);
s.integer(ex_offset);
s.integer(fx_offset);
s.integer(r4840);
s.integer(r4841);
s.integer(r4842);
s.integer(rtc_state);
s.integer(rtc_mode);
s.integer(rtc_index);
}
#endif

View File

@@ -0,0 +1,682 @@
#include <snes.hpp>
#define SPC7110_CPP
namespace SNES {
SPC7110 spc7110;
SPC7110MCU spc7110mcu;
SPC7110DCU spc7110dcu;
SPC7110RAM spc7110ram;
#include "serialization.cpp"
#include "decomp.cpp"
const unsigned SPC7110::months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
void SPC7110::init() {}
void SPC7110::enable() {}
void SPC7110::power() {
reset();
}
void SPC7110::reset() {
r4801 = 0x00;
r4802 = 0x00;
r4803 = 0x00;
r4804 = 0x00;
r4805 = 0x00;
r4806 = 0x00;
r4807 = 0x00;
r4808 = 0x00;
r4809 = 0x00;
r480a = 0x00;
r480b = 0x00;
r480c = 0x00;
decomp.reset();
r4811 = 0x00;
r4812 = 0x00;
r4813 = 0x00;
r4814 = 0x00;
r4815 = 0x00;
r4816 = 0x00;
r4817 = 0x00;
r4818 = 0x00;
r481x = 0x00;
r4814_latch = false;
r4815_latch = false;
r4820 = 0x00;
r4821 = 0x00;
r4822 = 0x00;
r4823 = 0x00;
r4824 = 0x00;
r4825 = 0x00;
r4826 = 0x00;
r4827 = 0x00;
r4828 = 0x00;
r4829 = 0x00;
r482a = 0x00;
r482b = 0x00;
r482c = 0x00;
r482d = 0x00;
r482e = 0x00;
r482f = 0x00;
r4830 = 0x00;
mmio_write(0x4831, 0);
mmio_write(0x4832, 1);
mmio_write(0x4833, 2);
r4834 = 0x00;
r4840 = 0x00;
r4841 = 0x00;
r4842 = 0x00;
if(cartridge.has_spc7110rtc()) {
rtc_state = RTCS_Inactive;
rtc_mode = RTCM_Linear;
rtc_index = 0;
}
}
unsigned SPC7110::datarom_addr(unsigned addr) {
unsigned size = memory::cartrom.size() - cartridge.spc7110_data_rom_offset();
while(addr >= size) addr -= size;
return cartridge.spc7110_data_rom_offset() + addr;
}
unsigned SPC7110::data_pointer() { return r4811 + (r4812 << 8) + (r4813 << 16); }
unsigned SPC7110::data_adjust() { return r4814 + (r4815 << 8); }
unsigned SPC7110::data_increment() { return r4816 + (r4817 << 8); }
void SPC7110::set_data_pointer(unsigned addr) { r4811 = addr; r4812 = addr >> 8; r4813 = addr >> 16; }
void SPC7110::set_data_adjust(unsigned addr) { r4814 = addr; r4815 = addr >> 8; }
void SPC7110::update_time(int offset) {
time_t rtc_time
= (memory::cartrtc.read(16) << 0)
| (memory::cartrtc.read(17) << 8)
| (memory::cartrtc.read(18) << 16)
| (memory::cartrtc.read(19) << 24);
time_t current_time = time(0) - offset;
//sizeof(time_t) is platform-dependent; though memory::cartrtc needs to be platform-agnostic.
//yet platforms with 32-bit signed time_t will overflow every ~68 years. handle this by
//accounting for overflow at the cost of 1-bit precision (to catch underflow). this will allow
//memory::cartrtc timestamp to remain valid for up to ~34 years from the last update, even if
//time_t overflows. calculation should be valid regardless of number representation, time_t size,
//or whether time_t is signed or unsigned.
time_t diff
= (current_time >= rtc_time)
? (current_time - rtc_time)
: (std::numeric_limits<time_t>::max() - rtc_time + current_time + 1); //compensate for overflow
if(diff > std::numeric_limits<time_t>::max() / 2) diff = 0; //compensate for underflow
bool update = true;
if(memory::cartrtc.read(13) & 1) update = false; //do not update if CR0 timer disable flag is set
if(memory::cartrtc.read(15) & 3) update = false; //do not update if CR2 timer disable flags are set
if(diff > 0 && update == true) {
unsigned second = memory::cartrtc.read( 0) + memory::cartrtc.read( 1) * 10;
unsigned minute = memory::cartrtc.read( 2) + memory::cartrtc.read( 3) * 10;
unsigned hour = memory::cartrtc.read( 4) + memory::cartrtc.read( 5) * 10;
unsigned day = memory::cartrtc.read( 6) + memory::cartrtc.read( 7) * 10;
unsigned month = memory::cartrtc.read( 8) + memory::cartrtc.read( 9) * 10;
unsigned year = memory::cartrtc.read(10) + memory::cartrtc.read(11) * 10;
unsigned weekday = memory::cartrtc.read(12);
day--;
month--;
year += (year >= 90) ? 1900 : 2000; //range = 1990-2089
second += diff;
while(second >= 60) {
second -= 60;
minute++;
if(minute < 60) continue;
minute = 0;
hour++;
if(hour < 24) continue;
hour = 0;
day++;
weekday = (weekday + 1) % 7;
unsigned days = months[month % 12];
if(days == 28) {
bool leapyear = false;
if((year % 4) == 0) {
leapyear = true;
if((year % 100) == 0 && (year % 400) != 0) leapyear = false;
}
if(leapyear) days++;
}
if(day < days) continue;
day = 0;
month++;
if(month < 12) continue;
month = 0;
year++;
}
day++;
month++;
year %= 100;
memory::cartrtc.write( 0, second % 10);
memory::cartrtc.write( 1, second / 10);
memory::cartrtc.write( 2, minute % 10);
memory::cartrtc.write( 3, minute / 10);
memory::cartrtc.write( 4, hour % 10);
memory::cartrtc.write( 5, hour / 10);
memory::cartrtc.write( 6, day % 10);
memory::cartrtc.write( 7, day / 10);
memory::cartrtc.write( 8, month % 10);
memory::cartrtc.write( 9, month / 10);
memory::cartrtc.write(10, year % 10);
memory::cartrtc.write(11, (year / 10) % 10);
memory::cartrtc.write(12, weekday % 7);
}
memory::cartrtc.write(16, current_time >> 0);
memory::cartrtc.write(17, current_time >> 8);
memory::cartrtc.write(18, current_time >> 16);
memory::cartrtc.write(19, current_time >> 24);
}
uint8 SPC7110::mmio_read(unsigned addr) {
addr &= 0xffff;
switch(addr) {
//==================
//decompression unit
//==================
case 0x4800: {
uint16 counter = (r4809 + (r480a << 8));
counter--;
r4809 = counter;
r480a = counter >> 8;
return decomp.read();
}
case 0x4801: return r4801;
case 0x4802: return r4802;
case 0x4803: return r4803;
case 0x4804: return r4804;
case 0x4805: return r4805;
case 0x4806: return r4806;
case 0x4807: return r4807;
case 0x4808: return r4808;
case 0x4809: return r4809;
case 0x480a: return r480a;
case 0x480b: return r480b;
case 0x480c: {
uint8 status = r480c;
r480c &= 0x7f;
return status;
}
//==============
//data port unit
//==============
case 0x4810: {
if(r481x != 0x07) return 0x00;
unsigned addr = data_pointer();
unsigned adjust = data_adjust();
if(r4818 & 8) adjust = (int16)adjust; //16-bit sign extend
unsigned adjustaddr = addr;
if(r4818 & 2) {
adjustaddr += adjust;
set_data_adjust(adjust + 1);
}
uint8 data = memory::cartrom.read(datarom_addr(adjustaddr));
if(!(r4818 & 2)) {
unsigned increment = (r4818 & 1) ? data_increment() : 1;
if(r4818 & 4) increment = (int16)increment; //16-bit sign extend
if((r4818 & 16) == 0) {
set_data_pointer(addr + increment);
} else {
set_data_adjust(adjust + increment);
}
}
return data;
}
case 0x4811: return r4811;
case 0x4812: return r4812;
case 0x4813: return r4813;
case 0x4814: return r4814;
case 0x4815: return r4815;
case 0x4816: return r4816;
case 0x4817: return r4817;
case 0x4818: return r4818;
case 0x481a: {
if(r481x != 0x07) return 0x00;
unsigned addr = data_pointer();
unsigned adjust = data_adjust();
if(r4818 & 8) adjust = (int16)adjust; //16-bit sign extend
uint8 data = memory::cartrom.read(datarom_addr(addr + adjust));
if((r4818 & 0x60) == 0x60) {
if((r4818 & 16) == 0) {
set_data_pointer(addr + adjust);
} else {
set_data_adjust(adjust + adjust);
}
}
return data;
}
//=========
//math unit
//=========
case 0x4820: return r4820;
case 0x4821: return r4821;
case 0x4822: return r4822;
case 0x4823: return r4823;
case 0x4824: return r4824;
case 0x4825: return r4825;
case 0x4826: return r4826;
case 0x4827: return r4827;
case 0x4828: return r4828;
case 0x4829: return r4829;
case 0x482a: return r482a;
case 0x482b: return r482b;
case 0x482c: return r482c;
case 0x482d: return r482d;
case 0x482e: return r482e;
case 0x482f: {
uint8 status = r482f;
r482f &= 0x7f;
return status;
}
//===================
//memory mapping unit
//===================
case 0x4830: return r4830;
case 0x4831: return r4831;
case 0x4832: return r4832;
case 0x4833: return r4833;
case 0x4834: return r4834;
//====================
//real-time clock unit
//====================
case 0x4840: return r4840;
case 0x4841: {
if(rtc_state == RTCS_Inactive || rtc_state == RTCS_ModeSelect) return 0x00;
r4842 = 0x80;
uint8 data = memory::cartrtc.read(rtc_index);
rtc_index = (rtc_index + 1) & 15;
return data;
}
case 0x4842: {
uint8 status = r4842;
r4842 &= 0x7f;
return status;
}
}
return cpu.regs.mdr;
}
void SPC7110::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
switch(addr) {
//==================
//decompression unit
//==================
case 0x4801: r4801 = data; break;
case 0x4802: r4802 = data; break;
case 0x4803: r4803 = data; break;
case 0x4804: r4804 = data; break;
case 0x4805: r4805 = data; break;
case 0x4806: {
r4806 = data;
unsigned table = (r4801 + (r4802 << 8) + (r4803 << 16));
unsigned index = (r4804 << 2);
unsigned length = (r4809 + (r480a << 8));
unsigned addr = datarom_addr(table + index);
unsigned mode = (memory::cartrom.read(addr + 0));
unsigned offset = (memory::cartrom.read(addr + 1) << 16)
+ (memory::cartrom.read(addr + 2) << 8)
+ (memory::cartrom.read(addr + 3) << 0);
decomp.init(mode, offset, (r4805 + (r4806 << 8)) << mode);
r480c = 0x80;
} break;
case 0x4807: r4807 = data; break;
case 0x4808: r4808 = data; break;
case 0x4809: r4809 = data; break;
case 0x480a: r480a = data; break;
case 0x480b: r480b = data; break;
//==============
//data port unit
//==============
case 0x4811: r4811 = data; r481x |= 0x01; break;
case 0x4812: r4812 = data; r481x |= 0x02; break;
case 0x4813: r4813 = data; r481x |= 0x04; break;
case 0x4814: {
r4814 = data;
r4814_latch = true;
if(!r4815_latch) break;
if(!(r4818 & 2)) break;
if(r4818 & 0x10) break;
if((r4818 & 0x60) == 0x20) {
unsigned increment = data_adjust() & 0xff;
if(r4818 & 8) increment = (int8)increment; //8-bit sign extend
set_data_pointer(data_pointer() + increment);
} else if((r4818 & 0x60) == 0x40) {
unsigned increment = data_adjust();
if(r4818 & 8) increment = (int16)increment; //16-bit sign extend
set_data_pointer(data_pointer() + increment);
}
} break;
case 0x4815: {
r4815 = data;
r4815_latch = true;
if(!r4814_latch) break;
if(!(r4818 & 2)) break;
if(r4818 & 0x10) break;
if((r4818 & 0x60) == 0x20) {
unsigned increment = data_adjust() & 0xff;
if(r4818 & 8) increment = (int8)increment; //8-bit sign extend
set_data_pointer(data_pointer() + increment);
} else if((r4818 & 0x60) == 0x40) {
unsigned increment = data_adjust();
if(r4818 & 8) increment = (int16)increment; //16-bit sign extend
set_data_pointer(data_pointer() + increment);
}
} break;
case 0x4816: r4816 = data; break;
case 0x4817: r4817 = data; break;
case 0x4818: {
if(r481x != 0x07) break;
r4818 = data;
r4814_latch = r4815_latch = false;
} break;
//=========
//math unit
//=========
case 0x4820: r4820 = data; break;
case 0x4821: r4821 = data; break;
case 0x4822: r4822 = data; break;
case 0x4823: r4823 = data; break;
case 0x4824: r4824 = data; break;
case 0x4825: {
r4825 = data;
if(r482e & 1) {
//signed 16-bit x 16-bit multiplication
int16 r0 = (int16)(r4824 + (r4825 << 8));
int16 r1 = (int16)(r4820 + (r4821 << 8));
signed result = r0 * r1;
r4828 = result;
r4829 = result >> 8;
r482a = result >> 16;
r482b = result >> 24;
} else {
//unsigned 16-bit x 16-bit multiplication
uint16 r0 = (uint16)(r4824 + (r4825 << 8));
uint16 r1 = (uint16)(r4820 + (r4821 << 8));
unsigned result = r0 * r1;
r4828 = result;
r4829 = result >> 8;
r482a = result >> 16;
r482b = result >> 24;
}
r482f = 0x80;
} break;
case 0x4826: r4826 = data; break;
case 0x4827: {
r4827 = data;
if(r482e & 1) {
//signed 32-bit x 16-bit division
int32 dividend = (int32)(r4820 + (r4821 << 8) + (r4822 << 16) + (r4823 << 24));
int16 divisor = (int16)(r4826 + (r4827 << 8));
int32 quotient;
int16 remainder;
if(divisor) {
quotient = (int32)(dividend / divisor);
remainder = (int32)(dividend % divisor);
} else {
//illegal division by zero
quotient = 0;
remainder = dividend & 0xffff;
}
r4828 = quotient;
r4829 = quotient >> 8;
r482a = quotient >> 16;
r482b = quotient >> 24;
r482c = remainder;
r482d = remainder >> 8;
} else {
//unsigned 32-bit x 16-bit division
uint32 dividend = (uint32)(r4820 + (r4821 << 8) + (r4822 << 16) + (r4823 << 24));
uint16 divisor = (uint16)(r4826 + (r4827 << 8));
uint32 quotient;
uint16 remainder;
if(divisor) {
quotient = (uint32)(dividend / divisor);
remainder = (uint16)(dividend % divisor);
} else {
//illegal division by zero
quotient = 0;
remainder = dividend & 0xffff;
}
r4828 = quotient;
r4829 = quotient >> 8;
r482a = quotient >> 16;
r482b = quotient >> 24;
r482c = remainder;
r482d = remainder >> 8;
}
r482f = 0x80;
} break;
case 0x482e: {
//reset math unit
r4820 = r4821 = r4822 = r4823 = 0;
r4824 = r4825 = r4826 = r4827 = 0;
r4828 = r4829 = r482a = r482b = 0;
r482c = r482d = 0;
r482e = data;
} break;
//===================
//memory mapping unit
//===================
case 0x4830: r4830 = data; break;
case 0x4831: {
r4831 = data;
dx_offset = datarom_addr(data * 0x100000);
} break;
case 0x4832: {
r4832 = data;
ex_offset = datarom_addr(data * 0x100000);
} break;
case 0x4833: {
r4833 = data;
fx_offset = datarom_addr(data * 0x100000);
} break;
case 0x4834: r4834 = data; break;
//====================
//real-time clock unit
//====================
case 0x4840: {
r4840 = data;
if(!(r4840 & 1)) {
//disable RTC
rtc_state = RTCS_Inactive;
update_time();
} else {
//enable RTC
r4842 = 0x80;
rtc_state = RTCS_ModeSelect;
}
} break;
case 0x4841: {
r4841 = data;
switch(rtc_state) {
case RTCS_ModeSelect: {
if(data == RTCM_Linear || data == RTCM_Indexed) {
r4842 = 0x80;
rtc_state = RTCS_IndexSelect;
rtc_mode = (RTC_Mode)data;
rtc_index = 0;
}
} break;
case RTCS_IndexSelect: {
r4842 = 0x80;
rtc_index = data & 15;
if(rtc_mode == RTCM_Linear) rtc_state = RTCS_Write;
} break;
case RTCS_Write: {
r4842 = 0x80;
//control register 0
if(rtc_index == 13) {
//increment second counter
if(data & 2) update_time(+1);
//round minute counter
if(data & 8) {
update_time();
unsigned second = memory::cartrtc.read( 0) + memory::cartrtc.read( 1) * 10;
//clear seconds
memory::cartrtc.write(0, 0);
memory::cartrtc.write(1, 0);
if(second >= 30) update_time(+60);
}
}
//control register 2
if(rtc_index == 15) {
//disable timer and clear second counter
if((data & 1) && !(memory::cartrtc.read(15) & 1)) {
update_time();
//clear seconds
memory::cartrtc.write(0, 0);
memory::cartrtc.write(1, 0);
}
//disable timer
if((data & 2) && !(memory::cartrtc.read(15) & 2)) {
update_time();
}
}
memory::cartrtc.write(rtc_index, data & 15);
rtc_index = (rtc_index + 1) & 15;
} break;
} //switch(rtc_state)
} break;
}
}
SPC7110::SPC7110() {
}
//==========
//SPC7110MCU
//==========
unsigned SPC7110MCU::size() const {
return 0x300000;
}
uint8 SPC7110MCU::read(unsigned addr) {
if(addr <= 0xdfffff) return memory::cartrom.read(spc7110.dx_offset + (addr & 0x0fffff));
if(addr <= 0xefffff) return memory::cartrom.read(spc7110.ex_offset + (addr & 0x0fffff));
if(addr <= 0xffffff) return memory::cartrom.read(spc7110.fx_offset + (addr & 0x0fffff));
return cpu.regs.mdr;
}
void SPC7110MCU::write(unsigned addr, uint8 data) {
}
//==========
//SPC7110DCU
//==========
uint8 SPC7110DCU::read(unsigned) {
return spc7110.mmio_read(0x4800);
}
void SPC7110DCU::write(unsigned, uint8) {
}
//==========
//SPC7110RAM
//==========
unsigned SPC7110RAM::size() const {
return 0x2000;
}
uint8 SPC7110RAM::read(unsigned addr) {
return memory::cartram.read(addr & 0x1fff);
}
void SPC7110RAM::write(unsigned addr, uint8 data) {
if(spc7110.r4830 & 0x80) memory::cartram.write(addr & 0x1fff, data);
}
}

View File

@@ -0,0 +1,159 @@
/*****
* SPC7110 emulator - version 0.04 (2010-02-14)
* Copyright (c) 2008-2010, byuu and neviksti
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* The software is provided "as is" and the author disclaims all warranties
* with regard to this software including all implied warranties of
* merchantibility and fitness, in no event shall the author be liable for
* any special, direct, indirect, or consequential damages or any damages
* whatsoever resulting from loss of use, data or profits, whether in an
* action of contract, negligence or other tortious action, arising out of
* or in connection with the use or performance of this software.
*****/
#include "decomp.hpp"
class SPC7110 : public MMIO {
public:
void init();
void enable();
void power();
void reset();
unsigned datarom_addr(unsigned addr);
unsigned data_pointer();
unsigned data_adjust();
unsigned data_increment();
void set_data_pointer(unsigned addr);
void set_data_adjust(unsigned addr);
void update_time(int offset = 0);
time_t create_time();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
//spc7110decomp
void decomp_init();
uint8 decomp_read();
void serialize(serializer&);
SPC7110();
private:
//==================
//decompression unit
//==================
uint8 r4801; //compression table low
uint8 r4802; //compression table high
uint8 r4803; //compression table bank
uint8 r4804; //compression table index
uint8 r4805; //decompression buffer index low
uint8 r4806; //decompression buffer index high
uint8 r4807; //???
uint8 r4808; //???
uint8 r4809; //compression length low
uint8 r480a; //compression length high
uint8 r480b; //decompression control register
uint8 r480c; //decompression status
SPC7110Decomp decomp;
//==============
//data port unit
//==============
uint8 r4811; //data pointer low
uint8 r4812; //data pointer high
uint8 r4813; //data pointer bank
uint8 r4814; //data adjust low
uint8 r4815; //data adjust high
uint8 r4816; //data increment low
uint8 r4817; //data increment high
uint8 r4818; //data port control register
uint8 r481x;
bool r4814_latch;
bool r4815_latch;
//=========
//math unit
//=========
uint8 r4820; //16-bit multiplicand B0, 32-bit dividend B0
uint8 r4821; //16-bit multiplicand B1, 32-bit dividend B1
uint8 r4822; //32-bit dividend B2
uint8 r4823; //32-bit dividend B3
uint8 r4824; //16-bit multiplier B0
uint8 r4825; //16-bit multiplier B1
uint8 r4826; //16-bit divisor B0
uint8 r4827; //16-bit divisor B1
uint8 r4828; //32-bit product B0, 32-bit quotient B0
uint8 r4829; //32-bit product B1, 32-bit quotient B1
uint8 r482a; //32-bit product B2, 32-bit quotient B2
uint8 r482b; //32-bit product B3, 32-bit quotient B3
uint8 r482c; //16-bit remainder B0
uint8 r482d; //16-bit remainder B1
uint8 r482e; //math control register
uint8 r482f; //math status
//===================
//memory mapping unit
//===================
uint8 r4830; //SRAM write enable
uint8 r4831; //$[d0-df]:[0000-ffff] mapping
uint8 r4832; //$[e0-ef]:[0000-ffff] mapping
uint8 r4833; //$[f0-ff]:[0000-ffff] mapping
uint8 r4834; //???
unsigned dx_offset;
unsigned ex_offset;
unsigned fx_offset;
//====================
//real-time clock unit
//====================
uint8 r4840; //RTC latch
uint8 r4841; //RTC index/data port
uint8 r4842; //RTC status
enum RTC_State { RTCS_Inactive, RTCS_ModeSelect, RTCS_IndexSelect, RTCS_Write };
enum RTC_Mode { RTCM_Linear = 0x03, RTCM_Indexed = 0x0c };
unsigned rtc_state;
unsigned rtc_mode;
unsigned rtc_index;
static const unsigned months[12];
friend class SPC7110MCU;
friend class SPC7110DCU;
friend class SPC7110RAM;
};
class SPC7110MCU : public Memory {
public:
unsigned size() const;
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
};
class SPC7110DCU : public Memory {
public:
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
};
class SPC7110RAM : public Memory {
public:
unsigned size() const;
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
};
extern SPC7110 spc7110;
extern SPC7110MCU spc7110mcu;
extern SPC7110DCU spc7110dcu;
extern SPC7110RAM spc7110ram;

View File

@@ -0,0 +1,8 @@
#ifdef SRTC_CPP
void SRTC::serialize(serializer &s) {
s.integer(rtc_mode);
s.integer(rtc_index);
}
#endif

231
asnes/chip/srtc/srtc.cpp Normal file
View File

@@ -0,0 +1,231 @@
#include <snes.hpp>
#define SRTC_CPP
namespace SNES {
SRTC srtc;
#include "serialization.cpp"
const unsigned SRTC::months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
void SRTC::init() {
}
void SRTC::enable() {
}
void SRTC::power() {
reset();
}
void SRTC::reset() {
rtc_mode = RtcRead;
rtc_index = -1;
update_time();
}
void SRTC::update_time() {
time_t rtc_time
= (memory::cartrtc.read(16) << 0)
| (memory::cartrtc.read(17) << 8)
| (memory::cartrtc.read(18) << 16)
| (memory::cartrtc.read(19) << 24);
time_t current_time = time(0);
//sizeof(time_t) is platform-dependent; though memory::cartrtc needs to be platform-agnostic.
//yet platforms with 32-bit signed time_t will overflow every ~68 years. handle this by
//accounting for overflow at the cost of 1-bit precision (to catch underflow). this will allow
//memory::cartrtc timestamp to remain valid for up to ~34 years from the last update, even if
//time_t overflows. calculation should be valid regardless of number representation, time_t size,
//or whether time_t is signed or unsigned.
time_t diff
= (current_time >= rtc_time)
? (current_time - rtc_time)
: (std::numeric_limits<time_t>::max() - rtc_time + current_time + 1); //compensate for overflow
if(diff > std::numeric_limits<time_t>::max() / 2) diff = 0; //compensate for underflow
if(diff > 0) {
unsigned second = memory::cartrtc.read( 0) + memory::cartrtc.read( 1) * 10;
unsigned minute = memory::cartrtc.read( 2) + memory::cartrtc.read( 3) * 10;
unsigned hour = memory::cartrtc.read( 4) + memory::cartrtc.read( 5) * 10;
unsigned day = memory::cartrtc.read( 6) + memory::cartrtc.read( 7) * 10;
unsigned month = memory::cartrtc.read( 8);
unsigned year = memory::cartrtc.read( 9) + memory::cartrtc.read(10) * 10 + memory::cartrtc.read(11) * 100;
unsigned weekday = memory::cartrtc.read(12);
day--;
month--;
year += 1000;
second += diff;
while(second >= 60) {
second -= 60;
minute++;
if(minute < 60) continue;
minute = 0;
hour++;
if(hour < 24) continue;
hour = 0;
day++;
weekday = (weekday + 1) % 7;
unsigned days = months[month % 12];
if(days == 28) {
bool leapyear = false;
if((year % 4) == 0) {
leapyear = true;
if((year % 100) == 0 && (year % 400) != 0) leapyear = false;
}
if(leapyear) days++;
}
if(day < days) continue;
day = 0;
month++;
if(month < 12) continue;
month = 0;
year++;
}
day++;
month++;
year -= 1000;
memory::cartrtc.write( 0, second % 10);
memory::cartrtc.write( 1, second / 10);
memory::cartrtc.write( 2, minute % 10);
memory::cartrtc.write( 3, minute / 10);
memory::cartrtc.write( 4, hour % 10);
memory::cartrtc.write( 5, hour / 10);
memory::cartrtc.write( 6, day % 10);
memory::cartrtc.write( 7, day / 10);
memory::cartrtc.write( 8, month);
memory::cartrtc.write( 9, year % 10);
memory::cartrtc.write(10, (year / 10) % 10);
memory::cartrtc.write(11, year / 100);
memory::cartrtc.write(12, weekday % 7);
}
memory::cartrtc.write(16, current_time >> 0);
memory::cartrtc.write(17, current_time >> 8);
memory::cartrtc.write(18, current_time >> 16);
memory::cartrtc.write(19, current_time >> 24);
}
//returns day of week for specified date
//eg 0 = Sunday, 1 = Monday, ... 6 = Saturday
//usage: weekday(2008, 1, 1) returns weekday of January 1st, 2008
unsigned SRTC::weekday(unsigned year, unsigned month, unsigned day) {
unsigned y = 1900, m = 1; //epoch is 1900-01-01
unsigned sum = 0; //number of days passed since epoch
year = max(1900, year);
month = max(1, min(12, month));
day = max(1, min(31, day));
while(y < year) {
bool leapyear = false;
if((y % 4) == 0) {
leapyear = true;
if((y % 100) == 0 && (y % 400) != 0) leapyear = false;
}
sum += leapyear ? 366 : 365;
y++;
}
while(m < month) {
unsigned days = months[m - 1];
if(days == 28) {
bool leapyear = false;
if((y % 4) == 0) {
leapyear = true;
if((y % 100) == 0 && (y % 400) != 0) leapyear = false;
}
if(leapyear) days++;
}
sum += days;
m++;
}
sum += day - 1;
return (sum + 1) % 7; //1900-01-01 was a Monday
}
uint8 SRTC::mmio_read(unsigned addr) {
addr &= 0xffff;
if(addr == 0x2800) {
if(rtc_mode != RtcRead) return 0x00;
if(rtc_index < 0) {
update_time();
rtc_index++;
return 0x0f;
} else if(rtc_index > 12) {
rtc_index = -1;
return 0x0f;
} else {
return memory::cartrtc.read(rtc_index++);
}
}
return cpu.regs.mdr;
}
void SRTC::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
if(addr == 0x2801) {
data &= 0x0f; //only the low four bits are used
if(data == 0x0d) {
rtc_mode = RtcRead;
rtc_index = -1;
return;
}
if(data == 0x0e) {
rtc_mode = RtcCommand;
return;
}
if(data == 0x0f) return; //unknown behavior
if(rtc_mode == RtcWrite) {
if(rtc_index >= 0 && rtc_index < 12) {
memory::cartrtc.write(rtc_index++, data);
if(rtc_index == 12) {
//day of week is automatically calculated and written
unsigned day = memory::cartrtc.read( 6) + memory::cartrtc.read( 7) * 10;
unsigned month = memory::cartrtc.read( 8);
unsigned year = memory::cartrtc.read( 9) + memory::cartrtc.read(10) * 10 + memory::cartrtc.read(11) * 100;
year += 1000;
memory::cartrtc.write(rtc_index++, weekday(year, month, day));
}
}
} else if(rtc_mode == RtcCommand) {
if(data == 0) {
rtc_mode = RtcWrite;
rtc_index = 0;
} else if(data == 4) {
rtc_mode = RtcReady;
rtc_index = -1;
for(unsigned i = 0; i < 13; i++) memory::cartrtc.write(i, 0);
} else {
//unknown behavior
rtc_mode = RtcReady;
}
}
}
}
SRTC::SRTC() {
}
}

24
asnes/chip/srtc/srtc.hpp Normal file
View File

@@ -0,0 +1,24 @@
class SRTC : public MMIO {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
void serialize(serializer&);
SRTC();
private:
static const unsigned months[12];
enum RtcMode { RtcReady, RtcCommand, RtcRead, RtcWrite };
unsigned rtc_mode;
signed rtc_index;
void update_time();
unsigned weekday(unsigned year, unsigned month, unsigned day);
};
extern SRTC srtc;

130
asnes/chip/st0010/data.hpp Normal file
View File

@@ -0,0 +1,130 @@
#ifdef ST0010_CPP
const int16 ST0010::sin_table[256] = {
0x0000, 0x0324, 0x0648, 0x096a, 0x0c8c, 0x0fab, 0x12c8, 0x15e2,
0x18f9, 0x1c0b, 0x1f1a, 0x2223, 0x2528, 0x2826, 0x2b1f, 0x2e11,
0x30fb, 0x33df, 0x36ba, 0x398c, 0x3c56, 0x3f17, 0x41ce, 0x447a,
0x471c, 0x49b4, 0x4c3f, 0x4ebf, 0x5133, 0x539b, 0x55f5, 0x5842,
0x5a82, 0x5cb3, 0x5ed7, 0x60eb, 0x62f1, 0x64e8, 0x66cf, 0x68a6,
0x6a6d, 0x6c23, 0x6dc9, 0x6f5e, 0x70e2, 0x7254, 0x73b5, 0x7504,
0x7641, 0x776b, 0x7884, 0x7989, 0x7a7c, 0x7b5c, 0x7c29, 0x7ce3,
0x7d89, 0x7e1d, 0x7e9c, 0x7f09, 0x7f61, 0x7fa6, 0x7fd8, 0x7ff5,
0x7fff, 0x7ff5, 0x7fd8, 0x7fa6, 0x7f61, 0x7f09, 0x7e9c, 0x7e1d,
0x7d89, 0x7ce3, 0x7c29, 0x7b5c, 0x7a7c, 0x7989, 0x7884, 0x776b,
0x7641, 0x7504, 0x73b5, 0x7254, 0x70e2, 0x6f5e, 0x6dc9, 0x6c23,
0x6a6d, 0x68a6, 0x66cf, 0x64e8, 0x62f1, 0x60eb, 0x5ed7, 0x5cb3,
0x5a82, 0x5842, 0x55f5, 0x539b, 0x5133, 0x4ebf, 0x4c3f, 0x49b4,
0x471c, 0x447a, 0x41ce, 0x3f17, 0x3c56, 0x398c, 0x36ba, 0x33df,
0x30fb, 0x2e11, 0x2b1f, 0x2826, 0x2528, 0x2223, 0x1f1a, 0x1c0b,
0x18f8, 0x15e2, 0x12c8, 0x0fab, 0x0c8c, 0x096a, 0x0648, 0x0324,
0x0000, -0x0324, -0x0648, -0x096b, -0x0c8c, -0x0fab, -0x12c8, -0x15e2,
-0x18f9, -0x1c0b, -0x1f1a, -0x2223, -0x2528, -0x2826, -0x2b1f, -0x2e11,
-0x30fb, -0x33df, -0x36ba, -0x398d, -0x3c56, -0x3f17, -0x41ce, -0x447a,
-0x471c, -0x49b4, -0x4c3f, -0x4ebf, -0x5133, -0x539b, -0x55f5, -0x5842,
-0x5a82, -0x5cb3, -0x5ed7, -0x60ec, -0x62f1, -0x64e8, -0x66cf, -0x68a6,
-0x6a6d, -0x6c23, -0x6dc9, -0x6f5e, -0x70e2, -0x7254, -0x73b5, -0x7504,
-0x7641, -0x776b, -0x7884, -0x7989, -0x7a7c, -0x7b5c, -0x7c29, -0x7ce3,
-0x7d89, -0x7e1d, -0x7e9c, -0x7f09, -0x7f61, -0x7fa6, -0x7fd8, -0x7ff5,
-0x7fff, -0x7ff5, -0x7fd8, -0x7fa6, -0x7f61, -0x7f09, -0x7e9c, -0x7e1d,
-0x7d89, -0x7ce3, -0x7c29, -0x7b5c, -0x7a7c, -0x7989, -0x7883, -0x776b,
-0x7641, -0x7504, -0x73b5, -0x7254, -0x70e2, -0x6f5e, -0x6dc9, -0x6c23,
-0x6a6d, -0x68a6, -0x66cf, -0x64e8, -0x62f1, -0x60eb, -0x5ed7, -0x5cb3,
-0x5a82, -0x5842, -0x55f5, -0x539a, -0x5133, -0x4ebf, -0x4c3f, -0x49b3,
-0x471c, -0x447a, -0x41cd, -0x3f17, -0x3c56, -0x398c, -0x36b9, -0x33de,
-0x30fb, -0x2e10, -0x2b1f, -0x2826, -0x2527, -0x2223, -0x1f19, -0x1c0b,
-0x18f8, -0x15e2, -0x12c8, -0x0fab, -0x0c8b, -0x096a, -0x0647, -0x0324
};
const int16 ST0010::mode7_scale[176] = {
0x0380, 0x0325, 0x02da, 0x029c, 0x0268, 0x023b, 0x0215, 0x01f3,
0x01d5, 0x01bb, 0x01a3, 0x018e, 0x017b, 0x016a, 0x015a, 0x014b,
0x013e, 0x0132, 0x0126, 0x011c, 0x0112, 0x0109, 0x0100, 0x00f8,
0x00f0, 0x00e9, 0x00e3, 0x00dc, 0x00d6, 0x00d1, 0x00cb, 0x00c6,
0x00c1, 0x00bd, 0x00b8, 0x00b4, 0x00b0, 0x00ac, 0x00a8, 0x00a5,
0x00a2, 0x009e, 0x009b, 0x0098, 0x0095, 0x0093, 0x0090, 0x008d,
0x008b, 0x0088, 0x0086, 0x0084, 0x0082, 0x0080, 0x007e, 0x007c,
0x007a, 0x0078, 0x0076, 0x0074, 0x0073, 0x0071, 0x006f, 0x006e,
0x006c, 0x006b, 0x0069, 0x0068, 0x0067, 0x0065, 0x0064, 0x0063,
0x0062, 0x0060, 0x005f, 0x005e, 0x005d, 0x005c, 0x005b, 0x005a,
0x0059, 0x0058, 0x0057, 0x0056, 0x0055, 0x0054, 0x0053, 0x0052,
0x0051, 0x0051, 0x0050, 0x004f, 0x004e, 0x004d, 0x004d, 0x004c,
0x004b, 0x004b, 0x004a, 0x0049, 0x0048, 0x0048, 0x0047, 0x0047,
0x0046, 0x0045, 0x0045, 0x0044, 0x0044, 0x0043, 0x0042, 0x0042,
0x0041, 0x0041, 0x0040, 0x0040, 0x003f, 0x003f, 0x003e, 0x003e,
0x003d, 0x003d, 0x003c, 0x003c, 0x003b, 0x003b, 0x003a, 0x003a,
0x003a, 0x0039, 0x0039, 0x0038, 0x0038, 0x0038, 0x0037, 0x0037,
0x0036, 0x0036, 0x0036, 0x0035, 0x0035, 0x0035, 0x0034, 0x0034,
0x0034, 0x0033, 0x0033, 0x0033, 0x0032, 0x0032, 0x0032, 0x0031,
0x0031, 0x0031, 0x0030, 0x0030, 0x0030, 0x0030, 0x002f, 0x002f,
0x002f, 0x002e, 0x002e, 0x002e, 0x002e, 0x002d, 0x002d, 0x002d,
0x002d, 0x002c, 0x002c, 0x002c, 0x002c, 0x002b, 0x002b, 0x002b
};
const uint8 ST0010::arctan[32][32] = {
{ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 },
{ 0x80, 0xa0, 0xad, 0xb3, 0xb6, 0xb8, 0xb9, 0xba, 0xbb, 0xbb, 0xbc, 0xbc, 0xbd, 0xbd, 0xbd, 0xbd,
0xbd, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbe, 0xbf, 0xbf, 0xbf, 0xbf },
{ 0x80, 0x93, 0xa0, 0xa8, 0xad, 0xb0, 0xb3, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xb9, 0xba, 0xba, 0xbb,
0xbb, 0xbb, 0xbb, 0xbc, 0xbc, 0xbc, 0xbc, 0xbc, 0xbd, 0xbd, 0xbd, 0xbd, 0xbd, 0xbd, 0xbd, 0xbd },
{ 0x80, 0x8d, 0x98, 0xa0, 0xa6, 0xaa, 0xad, 0xb0, 0xb1, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb7, 0xb8,
0xb8, 0xb9, 0xb9, 0xba, 0xba, 0xba, 0xba, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbc, 0xbc, 0xbc, 0xbc },
{ 0x80, 0x8a, 0x93, 0x9a, 0xa0, 0xa5, 0xa8, 0xab, 0xad, 0xaf, 0xb0, 0xb2, 0xb3, 0xb4, 0xb5, 0xb5,
0xb6, 0xb7, 0xb7, 0xb8, 0xb8, 0xb8, 0xb9, 0xb9, 0xb9, 0xba, 0xba, 0xba, 0xba, 0xba, 0xbb, 0xbb },
{ 0x80, 0x88, 0x90, 0x96, 0x9b, 0xa0, 0xa4, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3,
0xb4, 0xb4, 0xb5, 0xb6, 0xb6, 0xb6, 0xb7, 0xb7, 0xb8, 0xb8, 0xb8, 0xb9, 0xb9, 0xb9, 0xb9, 0xb9 },
{ 0x80, 0x87, 0x8d, 0x93, 0x98, 0x9c, 0xa0, 0xa3, 0xa6, 0xa8, 0xaa, 0xac, 0xad, 0xae, 0xb0, 0xb0,
0xb1, 0xb2, 0xb3, 0xb4, 0xb4, 0xb5, 0xb5, 0xb6, 0xb6, 0xb6, 0xb7, 0xb7, 0xb7, 0xb8, 0xb8, 0xb8 },
{ 0x80, 0x86, 0x8b, 0x90, 0x95, 0x99, 0x9d, 0xa0, 0xa3, 0xa5, 0xa7, 0xa9, 0xaa, 0xac, 0xad, 0xae,
0xaf, 0xb0, 0xb1, 0xb2, 0xb2, 0xb3, 0xb3, 0xb4, 0xb4, 0xb5, 0xb5, 0xb6, 0xb6, 0xb6, 0xb7, 0xb7 },
{ 0x80, 0x85, 0x8a, 0x8f, 0x93, 0x97, 0x9a, 0x9d, 0xa0, 0xa2, 0xa5, 0xa6, 0xa8, 0xaa, 0xab, 0xac,
0xad, 0xae, 0xaf, 0xb0, 0xb0, 0xb1, 0xb2, 0xb2, 0xb3, 0xb3, 0xb4, 0xb4, 0xb5, 0xb5, 0xb5, 0xb5 },
{ 0x80, 0x85, 0x89, 0x8d, 0x91, 0x95, 0x98, 0x9b, 0x9e, 0xa0, 0xa0, 0xa4, 0xa6, 0xa7, 0xa9, 0xaa,
0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb0, 0xb1, 0xb1, 0xb2, 0xb2, 0xb3, 0xb3, 0xb4, 0xb4, 0xb4 },
{ 0x80, 0x84, 0x88, 0x8c, 0x90, 0x93, 0x96, 0x99, 0x9b, 0x9e, 0xa0, 0xa2, 0xa4, 0xa5, 0xa7, 0xa8,
0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xaf, 0xb0, 0xb0, 0xb1, 0xb2, 0xb2, 0xb2, 0xb3, 0xb3 },
{ 0x80, 0x84, 0x87, 0x8b, 0x8e, 0x91, 0x94, 0x97, 0x9a, 0x9c, 0x9e, 0xa0, 0xa2, 0xa3, 0xa5, 0xa6,
0xa7, 0xa9, 0xaa, 0xab, 0xac, 0xac, 0xad, 0xae, 0xae, 0xaf, 0xb0, 0xb0, 0xb1, 0xb1, 0xb2, 0xb2 },
{ 0x80, 0x83, 0x87, 0x8a, 0x8d, 0x90, 0x93, 0x96, 0x98, 0x9a, 0x9c, 0x9e, 0xa0, 0xa2, 0xa3, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xac, 0xad, 0xae, 0xae, 0xaf, 0xb0, 0xb0, 0xb0, 0xb1 },
{ 0x80, 0x83, 0x86, 0x89, 0x8c, 0x8f, 0x92, 0x94, 0x96, 0x99, 0x9b, 0x9d, 0x9e, 0xa0, 0xa2, 0xa3,
0xa4, 0xa5, 0xa7, 0xa8, 0xa9, 0xa9, 0xaa, 0xab, 0xac, 0xac, 0xad, 0xae, 0xae, 0xaf, 0xaf, 0xb0 },
{ 0x80, 0x83, 0x86, 0x89, 0x8b, 0x8e, 0x90, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9e, 0xa0, 0xa1,
0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xaa, 0xab, 0xac, 0xad, 0xad, 0xae, 0xae, 0xaf },
{ 0x80, 0x83, 0x85, 0x88, 0x8b, 0x8d, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9b, 0x9d, 0x9f, 0xa0,
0xa1, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa8, 0xa9, 0xaa, 0xab, 0xab, 0xac, 0xad, 0xad, 0xae },
{ 0x80, 0x83, 0x85, 0x88, 0x8a, 0x8c, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9a, 0x9c, 0x9d, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa5, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xaa, 0xab, 0xab, 0xac, 0xad },
{ 0x80, 0x82, 0x85, 0x87, 0x89, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x97, 0x99, 0x9b, 0x9c, 0x9d,
0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa8, 0xa9, 0xaa, 0xaa, 0xab, 0xac },
{ 0x80, 0x82, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x96, 0x98, 0x99, 0x9b, 0x9c,
0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa7, 0xa8, 0xa9, 0xa9, 0xaa, 0xab },
{ 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x95, 0x97, 0x98, 0x9a, 0x9b,
0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa6, 0xa7, 0xa8, 0xa8, 0xa9, 0xaa },
{ 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x91, 0x93, 0x94, 0x96, 0x97, 0x99, 0x9a,
0x9b, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa5, 0xa6, 0xa7, 0xa7, 0xa8, 0xa9 },
{ 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8b, 0x8d, 0x8f, 0x90, 0x92, 0x94, 0x95, 0x97, 0x98, 0x99,
0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa4, 0xa5, 0xa6, 0xa6, 0xa7, 0xa8 },
{ 0x80, 0x82, 0x84, 0x86, 0x87, 0x89, 0x8b, 0x8d, 0x8e, 0x90, 0x91, 0x93, 0x94, 0x96, 0x97, 0x98,
0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa3, 0xa4, 0xa5, 0xa6, 0xa6, 0xa7 },
{ 0x80, 0x82, 0x84, 0x85, 0x87, 0x89, 0x8a, 0x8c, 0x8e, 0x8f, 0x91, 0x92, 0x94, 0x95, 0x96, 0x98,
0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa2, 0xa3, 0xa4, 0xa5, 0xa5, 0xa6 },
{ 0x80, 0x82, 0x83, 0x85, 0x87, 0x88, 0x8a, 0x8c, 0x8d, 0x8f, 0x90, 0x92, 0x93, 0x94, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa2, 0xa3, 0xa4, 0xa5, 0xa5 },
{ 0x80, 0x82, 0x83, 0x85, 0x86, 0x88, 0x8a, 0x8b, 0x8d, 0x8e, 0x90, 0x91, 0x92, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa2, 0xa3, 0xa4, 0xa4 },
{ 0x80, 0x82, 0x83, 0x85, 0x86, 0x88, 0x89, 0x8b, 0x8c, 0x8e, 0x8f, 0x90, 0x92, 0x93, 0x94, 0x95,
0x96, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa2, 0xa3, 0xa4 },
{ 0x80, 0x82, 0x83, 0x85, 0x86, 0x87, 0x89, 0x8a, 0x8c, 0x8d, 0x8e, 0x90, 0x91, 0x92, 0x93, 0x95,
0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9e, 0x9f, 0xa0, 0xa1, 0xa1, 0xa2, 0xa3 },
{ 0x80, 0x81, 0x83, 0x84, 0x86, 0x87, 0x89, 0x8a, 0x8b, 0x8d, 0x8e, 0x8f, 0x90, 0x92, 0x93, 0x94,
0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9e, 0x9f, 0xa0, 0xa1, 0xa1, 0xa2 },
{ 0x80, 0x81, 0x83, 0x84, 0x86, 0x87, 0x88, 0x8a, 0x8b, 0x8c, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93,
0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0x9f, 0xa0, 0xa1, 0xa1 },
{ 0x80, 0x81, 0x83, 0x84, 0x85, 0x87, 0x88, 0x89, 0x8b, 0x8c, 0x8d, 0x8e, 0x90, 0x91, 0x92, 0x93,
0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0x9f, 0xa0, 0xa1 },
{ 0x80, 0x81, 0x83, 0x84, 0x85, 0x87, 0x88, 0x89, 0x8a, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92,
0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9c, 0x9d, 0x9e, 0x9f, 0x9f, 0xa0 }
};
#endif

View File

@@ -0,0 +1,261 @@
#ifdef ST0010_CPP
//ST-0010 emulation code - Copyright (C) 2003 The Dumper, Matthew Kendora, Overload, Feather
//bsnes port - Copyright (C) 2007 byuu
void ST0010::op_01(int16 x0, int16 y0, int16 &x1, int16 &y1, int16 &quadrant, int16 &theta) {
if((x0 < 0) && (y0 < 0)) {
x1 = -x0;
y1 = -y0;
quadrant = -0x8000;
} else if(x0 < 0) {
x1 = y0;
y1 = -x0;
quadrant = -0x4000;
} else if(y0 < 0) {
x1 = -y0;
y1 = x0;
quadrant = 0x4000;
} else {
x1 = x0;
y1 = y0;
quadrant = 0x0000;
}
while((x1 > 0x1f) || (y1 > 0x1f)) {
if(x1 > 1) { x1 >>= 1; }
if(y1 > 1) { y1 >>= 1; }
}
if(y1 == 0) { quadrant += 0x4000; }
theta = (arctan[y1][x1] << 8) ^ quadrant;
}
//
void ST0010::op_01() {
int16 x0 = readw(0x0000);
int16 y0 = readw(0x0002);
int16 x1, y1, quadrant, theta;
op_01(x0, y0, x1, y1, quadrant, theta);
writew(0x0000, x1);
writew(0x0002, y1);
writew(0x0004, quadrant);
//writew(0x0006, y0); //Overload's docs note this write occurs, SNES9x disagrees
writew(0x0010, theta);
}
void ST0010::op_02() {
int16 positions = readw(0x0024);
uint16 *places = (uint16*)(ram + 0x0040);
uint16 *drivers = (uint16*)(ram + 0x0080);
bool sorted;
uint16 temp;
if(positions > 1) {
do {
sorted = true;
for(int i = 0; i < positions - 1; i++) {
if(places[i] < places[i + 1]) {
temp = places[i + 1];
places[i + 1] = places[i];
places[i] = temp;
temp = drivers[i + 1];
drivers[i + 1] = drivers[i];
drivers[i] = temp;
sorted = false;
}
}
positions--;
} while(!sorted);
}
}
void ST0010::op_03() {
int16 x0 = readw(0x0000);
int16 y0 = readw(0x0002);
int16 multiplier = readw(0x0004);
int32 x1, y1;
x1 = x0 * multiplier << 1;
y1 = y0 * multiplier << 1;
writed(0x0010, x1);
writed(0x0014, y1);
}
void ST0010::op_04() {
int16 x = readw(0x0000);
int16 y = readw(0x0002);
int16 square;
//calculate the vector length of (x,y)
square = (int16)sqrt((double)(y * y + x * x));
writew(0x0010, square);
}
void ST0010::op_05() {
int32 dx, dy;
int16 a1, b1, c1;
uint16 o1;
bool wrap = false;
//target (x,y) coordinates
int16 ypos_max = readw(0x00c0);
int16 xpos_max = readw(0x00c2);
//current coordinates and direction
int32 ypos = readd(0x00c4);
int32 xpos = readd(0x00c8);
uint16 rot = readw(0x00cc);
//physics
uint16 speed = readw(0x00d4);
uint16 accel = readw(0x00d6);
uint16 speed_max = readw(0x00d8);
//special condition acknowledgement
int16 system = readw(0x00da);
int16 flags = readw(0x00dc);
//new target coordinates
int16 ypos_new = readw(0x00de);
int16 xpos_new = readw(0x00e0);
//mask upper bit
xpos_new &= 0x7fff;
//get the current distance
dx = xpos_max - (xpos >> 16);
dy = ypos_max - (ypos >> 16);
//quirk: clear and move in9
writew(0x00d2, 0xffff);
writew(0x00da, 0x0000);
//grab the target angle
op_01(dy, dx, a1, b1, c1, (int16&)o1);
//check for wrapping
if(abs(o1 - rot) > 0x8000) {
o1 += 0x8000;
rot += 0x8000;
wrap = true;
}
uint16 old_speed = speed;
//special case
if(abs(o1 - rot) == 0x8000) {
speed = 0x100;
}
//slow down for sharp curves
else if(abs(o1 - rot) >= 0x1000) {
uint32 slow = abs(o1 - rot);
slow >>= 4; //scaling
speed -= slow;
}
//otherwise accelerate
else {
speed += accel;
if(speed > speed_max) {
speed = speed_max; //clip speed
}
}
//prevent negative/positive overflow
if(abs(old_speed - speed) > 0x8000) {
if(old_speed < speed) { speed = 0; }
else speed = 0xff00;
}
//adjust direction by so many degrees
//be careful of negative adjustments
if((o1 > rot && (o1 - rot) > 0x80) || (o1 < rot && (rot - o1) >= 0x80)) {
if(o1 < rot) { rot -= 0x280; }
else if(o1 > rot) { rot += 0x280; }
}
//turn off wrapping
if(wrap) { rot -= 0x8000; }
//now check the distances (store for later)
dx = (xpos_max << 16) - xpos;
dy = (ypos_max << 16) - ypos;
dx >>= 16;
dy >>= 16;
//if we're in so many units of the target, signal it
if((system && (dy <= 6 && dy >= -8) && (dx <= 126 && dx >= -128)) || (!system && (dx <= 6 && dx >= -8) && (dy <= 126 && dy >= -128))) {
//announce our new destination and flag it
xpos_max = xpos_new & 0x7fff;
ypos_max = ypos_new;
flags |= 0x08;
}
//update position
xpos -= (cos(rot) * 0x400 >> 15) * (speed >> 8) << 1;
ypos -= (sin(rot) * 0x400 >> 15) * (speed >> 8) << 1;
//quirk: mask upper byte
xpos &= 0x1fffffff;
ypos &= 0x1fffffff;
writew(0x00c0, ypos_max);
writew(0x00c2, xpos_max);
writed(0x00c4, ypos);
writed(0x00c8, xpos);
writew(0x00cc, rot);
writew(0x00d4, speed);
writew(0x00dc, flags);
}
void ST0010::op_06() {
int16 multiplicand = readw(0x0000);
int16 multiplier = readw(0x0002);
int32 product;
product = multiplicand * multiplier << 1;
writed(0x0010, product);
}
void ST0010::op_07() {
int16 theta = readw(0x0000);
int16 data;
for(int i = 0, offset = 0; i < 176; i++) {
data = mode7_scale[i] * cos(theta) >> 15;
writew(0x00f0 + offset, data);
writew(0x0510 + offset, data);
data = mode7_scale[i] * sin(theta) >> 15;
writew(0x0250 + offset, data);
if(data) { data = ~data; }
writew(0x03b0 + offset, data);
offset += 2;
}
}
void ST0010::op_08() {
int16 x0 = readw(0x0000);
int16 y0 = readw(0x0002);
int16 theta = readw(0x0004);
int16 x1, y1;
x1 = (y0 * sin(theta) >> 15) + (x0 * cos(theta) >> 15);
y1 = (y0 * cos(theta) >> 15) - (x0 * sin(theta) >> 15);
writew(0x0010, x1);
writew(0x0012, y1);
}
#endif

View File

@@ -0,0 +1,7 @@
#ifdef ST0010_CPP
void ST0010::serialize(serializer &s) {
s.array(ram);
}
#endif

View File

@@ -0,0 +1,93 @@
#include <snes.hpp>
#define ST0010_CPP
namespace SNES {
ST0010 st0010;
#include "data.hpp"
#include "opcodes.cpp"
#include "serialization.cpp"
void ST0010::init() {
}
void ST0010::enable() {
}
int16 ST0010::sin(int16 theta) {
return sin_table[(theta >> 8) & 0xff];
}
int16 ST0010::cos(int16 theta) {
return sin_table[((theta + 0x4000) >> 8) & 0xff];
}
uint8 ST0010::readb(uint16 addr) {
return ram[addr & 0xfff];
}
uint16 ST0010::readw(uint16 addr) {
return (readb(addr + 0) << 0) |
(readb(addr + 1) << 8);
}
uint32 ST0010::readd(uint16 addr) {
return (readb(addr + 0) << 0) |
(readb(addr + 1) << 8) |
(readb(addr + 2) << 16) |
(readb(addr + 3) << 24);
}
void ST0010::writeb(uint16 addr, uint8 data) {
ram[addr & 0xfff] = data;
}
void ST0010::writew(uint16 addr, uint16 data) {
writeb(addr + 0, data >> 0);
writeb(addr + 1, data >> 8);
}
void ST0010::writed(uint16 addr, uint32 data) {
writeb(addr + 0, data >> 0);
writeb(addr + 1, data >> 8);
writeb(addr + 2, data >> 16);
writeb(addr + 3, data >> 24);
}
//
void ST0010::power() {
reset();
}
void ST0010::reset() {
memset(ram, 0x00, sizeof ram);
}
//
uint8 ST0010::read(unsigned addr) {
return readb(addr);
}
void ST0010::write(unsigned addr, uint8 data) {
writeb(addr, data);
if((addr & 0xfff) == 0x0021 && (data & 0x80)) {
switch(ram[0x0020]) {
case 0x01: op_01(); break;
case 0x02: op_02(); break;
case 0x03: op_03(); break;
case 0x04: op_04(); break;
case 0x05: op_05(); break;
case 0x06: op_06(); break;
case 0x07: op_07(); break;
case 0x08: op_08(); break;
}
ram[0x0021] &= ~0x80;
}
}
}

View File

@@ -0,0 +1,44 @@
class ST0010 : public Memory {
public:
void init();
void enable();
void power();
void reset();
uint8 read(unsigned addr);
void write(unsigned addr, uint8 data);
void serialize(serializer&);
private:
uint8 ram[0x1000];
static const int16 sin_table[256];
static const int16 mode7_scale[176];
static const uint8 arctan[32][32];
//interfaces to sin table
int16 sin(int16 theta);
int16 cos(int16 theta);
//interfaces to ram buffer
uint8 readb (uint16 addr);
uint16 readw (uint16 addr);
uint32 readd (uint16 addr);
void writeb(uint16 addr, uint8 data);
void writew(uint16 addr, uint16 data);
void writed(uint16 addr, uint32 data);
//opcodes
void op_01();
void op_02();
void op_03();
void op_04();
void op_05();
void op_06();
void op_07();
void op_08();
void op_01(int16 x0, int16 y0, int16 &x1, int16 &y1, int16 &quadrant, int16 &theta);
};
extern ST0010 st0010;

View File

@@ -0,0 +1,20 @@
#include <snes.hpp>
#define ST0011_CPP
namespace SNES {
ST0011 st0011;
void ST0011::init() {
}
void ST0011::enable() {
}
void ST0011::power() {
}
void ST0011::reset() {
}
}

View File

@@ -0,0 +1,9 @@
class ST0011 {
public:
void init();
void enable();
void power();
void reset();
};
extern ST0011 st0011;

View File

@@ -0,0 +1,123 @@
#include <snes.hpp>
#define ST0018_CPP
namespace SNES {
ST0018 st0018;
uint8 ST0018::mmio_read(unsigned addr) {
addr &= 0xffff;
if(addr == 0x3800) return regs.r3800;
if(addr == 0x3804) return regs.r3804;
return cpu.regs.mdr;
}
void ST0018::mmio_write(unsigned addr, uint8 data) {
addr &= 0xffff;
if(addr == 0x3802) {
switch(regs.mode) {
case Waiting: {
switch(data) {
case 0x01: regs.r3800 = regs.r3800_01; break;
case 0xaa: op_board_upload(); break;
case 0xb2: op_b2(); break;
case 0xb3: op_b3(); break;
case 0xb4: op_b4(); break;
case 0xb5: op_b5(); break;
case 0xf1: op_query_chip(); break;
case 0xf2: op_query_chip(); break;
default: fprintf(stdout, "* ST018 w3802::%.2x\n", data); break;
}
} return;
case BoardUpload: {
op_board_upload(data);
} return;
}
}
if(addr == 0x3804) {
regs.w3804 <<= 8;
regs.w3804 |= data;
regs.w3804 &= 0xffffff;
return;
}
}
void ST0018::init() {
}
void ST0018::enable() {
}
void ST0018::power() {
reset();
}
void ST0018::reset() {
regs.mode = Waiting;
regs.r3800 = 0x00;
regs.r3804 = 0x85;
regs.w3804 = 0;
for(unsigned i = 0; i < 97; i++) board[i] = 0;
}
//===============
//ST-0018 opcodes
//===============
void ST0018::op_board_upload() {
regs.mode = BoardUpload;
regs.counter = 0;
regs.r3800 = 0xe0;
}
void ST0018::op_board_upload(uint8 data) {
board[regs.counter] = data;
regs.r3800 = 96 - regs.counter;
regs.counter++;
if(regs.counter >= 97) {
regs.mode = Waiting;
#if 0
for(unsigned y = 0; y < 9; y++) {
for(unsigned x = 0; x < 9; x++) {
fprintf(stdout, "%.2x ", board[y * 9 + x]);
}
fprintf(stdout, "\n");
}
for(unsigned n = 0; n < 16; n++) fprintf(stdout, "%.2x ", board[81 + n]);
fprintf(stdout, "\n\n");
#endif
}
}
void ST0018::op_b2() {
fprintf(stdout, "* ST018 w3802::b2\n");
regs.r3800 = 0xe0;
regs.r3800_01 = 0; //unknown
}
void ST0018::op_b3() {
fprintf(stdout, "* ST018 w3802::b3\n");
regs.r3800 = 0xe0;
regs.r3800_01 = 1; //0 = player lost?
}
void ST0018::op_b4() {
fprintf(stdout, "* ST018 w3802::b4\n");
regs.r3800 = 0xe0;
regs.r3800_01 = 1; //0 = player won?
}
void ST0018::op_b5() {
fprintf(stdout, "* ST018 w3802::b5\n");
regs.r3800 = 0xe0;
regs.r3800_01 = 0; //1 = move will result in checkmate?
}
void ST0018::op_query_chip() {
regs.r3800 = 0x00;
}
}

View File

@@ -0,0 +1,51 @@
class ST0018 : public MMIO {
public:
void init();
void enable();
void power();
void reset();
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);
enum mode_t { Waiting, BoardUpload };
struct regs_t {
mode_t mode;
uint8 r3800;
uint8 r3800_01;
uint8 r3804;
unsigned w3804;
unsigned counter;
} regs;
enum PieceID {
Pawn = 0x00, //foot soldier
Lance = 0x04, //incense chariot
Knight = 0x08, //cassia horse
Silver = 0x0c, //silver general
Gold = 0x10, //gold general
Rook = 0x14, //flying chariot
Bishop = 0x18, //angle mover
King = 0x1c, //king
};
enum PieceFlag {
PlayerA = 0x20,
PlayerB = 0x40,
};
uint8 board[9 * 9 + 16];
private:
void op_board_upload();
void op_board_upload(uint8 data);
void op_b2();
void op_b3();
void op_b4();
void op_b5();
void op_query_chip();
};
extern ST0018 st0018;

View File

@@ -0,0 +1,97 @@
#ifdef SUPERFX_CPP
SuperFXBus superfxbus;
namespace memory {
SuperFXGSUROM gsurom;
SuperFXGSURAM gsuram;
SuperFXCPUROM fxrom;
SuperFXCPURAM fxram;
}
void SuperFXBus::init() {
map(MapMode::Direct, 0x00, 0xff, 0x0000, 0xffff, memory::memory_unmapped);
map(MapMode::Linear, 0x00, 0x3f, 0x0000, 0x7fff, memory::gsurom);
map(MapMode::Linear, 0x00, 0x3f, 0x8000, 0xffff, memory::gsurom);
map(MapMode::Linear, 0x40, 0x5f, 0x0000, 0xffff, memory::gsurom);
map(MapMode::Linear, 0x60, 0x7f, 0x0000, 0xffff, memory::gsuram);
}
//ROM / RAM access from the SuperFX CPU
unsigned SuperFXGSUROM::size() const {
return memory::cartrom.size();
}
uint8 SuperFXGSUROM::read(unsigned addr) {
while(!superfx.regs.scmr.ron && scheduler.sync != Scheduler::SynchronizeMode::All) {
superfx.add_clocks(6);
superfx.synchronize_cpu();
}
return memory::cartrom.read(addr);
}
void SuperFXGSUROM::write(unsigned addr, uint8 data) {
while(!superfx.regs.scmr.ron && scheduler.sync != Scheduler::SynchronizeMode::All) {
superfx.add_clocks(6);
superfx.synchronize_cpu();
}
memory::cartrom.write(addr, data);
}
unsigned SuperFXGSURAM::size() const {
return memory::cartram.size();
}
uint8 SuperFXGSURAM::read(unsigned addr) {
while(!superfx.regs.scmr.ran && scheduler.sync != Scheduler::SynchronizeMode::All) {
superfx.add_clocks(6);
superfx.synchronize_cpu();
}
return memory::cartram.read(addr);
}
void SuperFXGSURAM::write(unsigned addr, uint8 data) {
while(!superfx.regs.scmr.ran && scheduler.sync != Scheduler::SynchronizeMode::All) {
superfx.add_clocks(6);
superfx.synchronize_cpu();
}
memory::cartram.write(addr, data);
}
//ROM / RAM access from the S-CPU
unsigned SuperFXCPUROM::size() const {
return memory::cartrom.size();
}
uint8 SuperFXCPUROM::read(unsigned addr) {
if(superfx.regs.sfr.g && superfx.regs.scmr.ron) {
static const uint8_t data[16] = {
0x00, 0x01, 0x00, 0x01, 0x04, 0x01, 0x00, 0x01,
0x00, 0x01, 0x08, 0x01, 0x00, 0x01, 0x0c, 0x01,
};
return data[addr & 15];
}
return memory::cartrom.read(addr);
}
void SuperFXCPUROM::write(unsigned addr, uint8 data) {
memory::cartrom.write(addr, data);
}
unsigned SuperFXCPURAM::size() const {
return memory::cartram.size();
}
uint8 SuperFXCPURAM::read(unsigned addr) {
if(superfx.regs.sfr.g && superfx.regs.scmr.ran) return cpu.regs.mdr;
return memory::cartram.read(addr);
}
void SuperFXCPURAM::write(unsigned addr, uint8 data) {
memory::cartram.write(addr, data);
}
#endif

View File

@@ -0,0 +1,34 @@
struct SuperFXBus : Bus {
void init();
};
struct SuperFXGSUROM : Memory {
unsigned size() const;
uint8 read(unsigned);
void write(unsigned, uint8);
};
struct SuperFXGSURAM : Memory {
unsigned size() const;
uint8 read(unsigned);
void write(unsigned, uint8);
};
struct SuperFXCPUROM : Memory {
unsigned size() const;
uint8 read(unsigned);
void write(unsigned, uint8);
};
struct SuperFXCPURAM : Memory {
unsigned size() const;
uint8 read(unsigned);
void write(unsigned, uint8);
};
namespace memory {
extern SuperFXGSUROM gsurom;
extern SuperFXGSURAM gsuram;
extern SuperFXCPUROM fxrom;
extern SuperFXCPURAM fxram;
}

View File

@@ -0,0 +1,107 @@
#ifdef SUPERFX_CPP
#include "opcodes.cpp"
#include "opcode_table.cpp"
uint8 SuperFX::color(uint8 source) {
if(regs.por.highnibble) return (regs.colr & 0xf0) | (source >> 4);
if(regs.por.freezehigh) return (regs.colr & 0xf0) | (source & 0x0f);
return source;
}
void SuperFX::plot(uint8 x, uint8 y) {
uint8 color = regs.colr;
if(regs.por.dither && regs.scmr.md != 3) {
if((x ^ y) & 1) color >>= 4;
color &= 0x0f;
}
if(!regs.por.transparent) {
if(regs.scmr.md == 3) {
if(regs.por.freezehigh) {
if((color & 0x0f) == 0) return;
} else {
if(color == 0) return;
}
} else {
if((color & 0x0f) == 0) return;
}
}
uint16 offset = (y << 5) + (x >> 3);
if(offset != pixelcache[0].offset) {
pixelcache_flush(pixelcache[1]);
pixelcache[1] = pixelcache[0];
pixelcache[0].bitpend = 0x00;
pixelcache[0].offset = offset;
}
x = (x & 7) ^ 7;
pixelcache[0].data[x] = color;
pixelcache[0].bitpend |= 1 << x;
if(pixelcache[0].bitpend == 0xff) {
pixelcache_flush(pixelcache[1]);
pixelcache[1] = pixelcache[0];
pixelcache[0].bitpend = 0x00;
}
}
uint8 SuperFX::rpix(uint8 x, uint8 y) {
pixelcache_flush(pixelcache[1]);
pixelcache_flush(pixelcache[0]);
unsigned cn; //character number
switch(regs.por.obj ? 3 : regs.scmr.ht) {
case 0: cn = ((x & 0xf8) << 1) + ((y & 0xf8) >> 3); break;
case 1: cn = ((x & 0xf8) << 1) + ((x & 0xf8) >> 1) + ((y & 0xf8) >> 3); break;
case 2: cn = ((x & 0xf8) << 1) + ((x & 0xf8) << 0) + ((y & 0xf8) >> 3); break;
case 3: cn = ((y & 0x80) << 2) + ((x & 0x80) << 1) + ((y & 0x78) << 1) + ((x & 0x78) >> 3); break;
}
unsigned bpp = 2 << (regs.scmr.md - (regs.scmr.md >> 1)); // = [regs.scmr.md]{ 2, 4, 4, 8 };
unsigned addr = 0x700000 + (cn * (bpp << 3)) + (regs.scbr << 10) + ((y & 0x07) * 2);
uint8 data = 0x00;
x = (x & 7) ^ 7;
for(unsigned n = 0; n < bpp; n++) {
unsigned byte = ((n >> 1) << 4) + (n & 1); // = [n]{ 0, 1, 16, 17, 32, 33, 48, 49 };
add_clocks(memory_access_speed);
data |= ((superfxbus.read(addr + byte) >> x) & 1) << n;
}
return data;
}
void SuperFX::pixelcache_flush(pixelcache_t &cache) {
if(cache.bitpend == 0x00) return;
uint8 x = cache.offset << 3;
uint8 y = cache.offset >> 5;
unsigned cn; //character number
switch(regs.por.obj ? 3 : regs.scmr.ht) {
case 0: cn = ((x & 0xf8) << 1) + ((y & 0xf8) >> 3); break;
case 1: cn = ((x & 0xf8) << 1) + ((x & 0xf8) >> 1) + ((y & 0xf8) >> 3); break;
case 2: cn = ((x & 0xf8) << 1) + ((x & 0xf8) << 0) + ((y & 0xf8) >> 3); break;
case 3: cn = ((y & 0x80) << 2) + ((x & 0x80) << 1) + ((y & 0x78) << 1) + ((x & 0x78) >> 3); break;
}
unsigned bpp = 2 << (regs.scmr.md - (regs.scmr.md >> 1)); // = [regs.scmr.md]{ 2, 4, 4, 8 };
unsigned addr = 0x700000 + (cn * (bpp << 3)) + (regs.scbr << 10) + ((y & 0x07) * 2);
for(unsigned n = 0; n < bpp; n++) {
unsigned byte = ((n >> 1) << 4) + (n & 1); // = [n]{ 0, 1, 16, 17, 32, 33, 48, 49 };
uint8 data = 0x00;
for(unsigned x = 0; x < 8; x++) data |= ((cache.data[x] >> n) & 1) << x;
if(cache.bitpend != 0xff) {
add_clocks(memory_access_speed);
data &= cache.bitpend;
data |= superfxbus.read(addr + byte) & ~cache.bitpend;
}
add_clocks(memory_access_speed);
superfxbus.write(addr + byte, data);
}
cache.bitpend = 0x00;
}
#endif

View File

@@ -0,0 +1,92 @@
#include "registers.hpp"
uint8 color(uint8 source);
void plot(uint8 x, uint8 y);
uint8 rpix(uint8 x, uint8 y);
void pixelcache_flush(pixelcache_t &cache);
void (SuperFX::*opcode_table[1024])();
void initialize_opcode_table();
//opcodes.cpp
template<int> void op_adc_i();
template<int> void op_adc_r();
template<int> void op_add_i();
template<int> void op_add_r();
void op_alt1();
void op_alt2();
void op_alt3();
template<int> void op_and_i();
template<int> void op_and_r();
void op_asr();
void op_bge();
void op_bcc();
void op_bcs();
void op_beq();
template<int> void op_bic_i();
template<int> void op_bic_r();
void op_blt();
void op_bmi();
void op_bne();
void op_bpl();
void op_bra();
void op_bvc();
void op_bvs();
void op_cache();
void op_cmode();
template<int> void op_cmp_r();
void op_color();
template<int> void op_dec_r();
void op_div2();
void op_fmult();
template<int> void op_from_r();
void op_getb();
void op_getbl();
void op_getbh();
void op_getbs();
void op_getc();
void op_hib();
template<int> void op_ibt_r();
template<int> void op_inc_r();
template<int> void op_iwt_r();
template<int> void op_jmp_r();
template<int> void op_ldb_ir();
template<int> void op_ldw_ir();
template<int> void op_link();
template<int> void op_ljmp_r();
template<int> void op_lm_r();
template<int> void op_lms_r();
void op_lmult();
void op_lob();
void op_loop();
void op_lsr();
void op_merge();
template<int> void op_mult_i();
template<int> void op_mult_r();
void op_nop();
void op_not();
template<int> void op_or_i();
template<int> void op_or_r();
void op_plot();
void op_ramb();
void op_rol();
void op_romb();
void op_ror();
void op_rpix();
template<int> void op_sbc_r();
void op_sbk();
void op_sex();
template<int> void op_sm_r();
template<int> void op_sms_r();
template<int> void op_stb_ir();
void op_stop();
template<int> void op_stw_ir();
template<int> void op_sub_i();
template<int> void op_sub_r();
void op_swap();
template<int> void op_to_r();
template<int> void op_umult_i();
template<int> void op_umult_r();
template<int> void op_with_r();
template<int> void op_xor_i();
template<int> void op_xor_r();

View File

@@ -0,0 +1,270 @@
#ifdef SUPERFX_CPP
void SuperFX::initialize_opcode_table() {
#define op4(id, name) \
op(id+ 0, name< 1>) op(id+ 1, name< 2>) op(id+ 2, name< 3>) op(id+ 3, name< 4>)
#define op6(id, name) \
op(id+ 0, name< 8>) op(id+ 1, name< 9>) op(id+ 2, name<10>) op(id+ 3, name<11>) \
op(id+ 4, name<12>) op(id+ 5, name<13>)
#define op12(id, name) \
op(id+ 0, name< 0>) op(id+ 1, name< 1>) op(id+ 2, name< 2>) op(id+ 3, name< 3>) \
op(id+ 4, name< 4>) op(id+ 5, name< 5>) op(id+ 6, name< 6>) op(id+ 7, name< 7>) \
op(id+ 8, name< 8>) op(id+ 9, name< 9>) op(id+10, name<10>) op(id+11, name<11>)
#define op15l(id, name) \
op(id+ 0, name< 0>) op(id+ 1, name< 1>) op(id+ 2, name< 2>) op(id+ 3, name< 3>) \
op(id+ 4, name< 4>) op(id+ 5, name< 5>) op(id+ 6, name< 6>) op(id+ 7, name< 7>) \
op(id+ 8, name< 8>) op(id+ 9, name< 9>) op(id+10, name<10>) op(id+11, name<11>) \
op(id+12, name<12>) op(id+13, name<13>) op(id+14, name<14>)
#define op15h(id, name) \
op(id+ 0, name< 1>) op(id+ 1, name< 2>) op(id+ 2, name< 3>) op(id+ 3, name< 4>) \
op(id+ 4, name< 5>) op(id+ 5, name< 6>) op(id+ 6, name< 7>) op(id+ 7, name< 8>) \
op(id+ 8, name< 9>) op(id+ 9, name<10>) op(id+10, name<11>) op(id+11, name<12>) \
op(id+12, name<13>) op(id+13, name<14>) op(id+14, name<15>)
#define op16(id, name) \
op(id+ 0, name< 0>) op(id+ 1, name< 1>) op(id+ 2, name< 2>) op(id+ 3, name< 3>) \
op(id+ 4, name< 4>) op(id+ 5, name< 5>) op(id+ 6, name< 6>) op(id+ 7, name< 7>) \
op(id+ 8, name< 8>) op(id+ 9, name< 9>) op(id+10, name<10>) op(id+11, name<11>) \
op(id+12, name<12>) op(id+13, name<13>) op(id+14, name<14>) op(id+15, name<15>)
//======
// ALT0
//======
#define op(id, name) opcode_table[ 0 + id] = &SuperFX::op_##name;
op (0x00, stop)
op (0x01, nop)
op (0x02, cache)
op (0x03, lsr)
op (0x04, rol)
op (0x05, bra)
op (0x06, blt)
op (0x07, bge)
op (0x08, bne)
op (0x09, beq)
op (0x0a, bpl)
op (0x0b, bmi)
op (0x0c, bcc)
op (0x0d, bcs)
op (0x0e, bvc)
op (0x0f, bvs)
op16 (0x10, to_r)
op16 (0x20, with_r)
op12 (0x30, stw_ir)
op (0x3c, loop)
op (0x3d, alt1)
op (0x3e, alt2)
op (0x3f, alt3)
op12 (0x40, ldw_ir)
op (0x4c, plot)
op (0x4d, swap)
op (0x4e, color)
op (0x4f, not)
op16 (0x50, add_r)
op16 (0x60, sub_r)
op (0x70, merge)
op15h(0x71, and_r)
op16 (0x80, mult_r)
op (0x90, sbk)
op4 (0x91, link)
op (0x95, sex)
op (0x96, asr)
op (0x97, ror)
op6 (0x98, jmp_r)
op (0x9e, lob)
op (0x9f, fmult)
op16 (0xa0, ibt_r)
op16 (0xb0, from_r)
op (0xc0, hib)
op15h(0xc1, or_r)
op15l(0xd0, inc_r)
op (0xdf, getc)
op15l(0xe0, dec_r)
op (0xef, getb)
op16 (0xf0, iwt_r)
#undef op
//======
// ALT1
//======
#define op(id, name) opcode_table[256 + id] = &SuperFX::op_##name;
op (0x00, stop)
op (0x01, nop)
op (0x02, cache)
op (0x03, lsr)
op (0x04, rol)
op (0x05, bra)
op (0x06, blt)
op (0x07, bge)
op (0x08, bne)
op (0x09, beq)
op (0x0a, bpl)
op (0x0b, bmi)
op (0x0c, bcc)
op (0x0d, bcs)
op (0x0e, bvc)
op (0x0f, bvs)
op16 (0x10, to_r)
op16 (0x20, with_r)
op12 (0x30, stb_ir)
op (0x3c, loop)
op (0x3d, alt1)
op (0x3e, alt2)
op (0x3f, alt3)
op12 (0x40, ldb_ir)
op (0x4c, rpix)
op (0x4d, swap)
op (0x4e, cmode)
op (0x4f, not)
op16 (0x50, adc_r)
op16 (0x60, sbc_r)
op (0x70, merge)
op15h(0x71, bic_r)
op16 (0x80, umult_r)
op (0x90, sbk)
op4 (0x91, link)
op (0x95, sex)
op (0x96, div2)
op (0x97, ror)
op6 (0x98, ljmp_r)
op (0x9e, lob)
op (0x9f, lmult)
op16 (0xa0, lms_r)
op16 (0xb0, from_r)
op (0xc0, hib)
op15h(0xc1, xor_r)
op15l(0xd0, inc_r)
op (0xdf, getc)
op15l(0xe0, dec_r)
op (0xef, getbh)
op16 (0xf0, lm_r)
#undef op
//======
// ALT2
//======
#define op(id, name) opcode_table[512 + id] = &SuperFX::op_##name;
op (0x00, stop)
op (0x01, nop)
op (0x02, cache)
op (0x03, lsr)
op (0x04, rol)
op (0x05, bra)
op (0x06, blt)
op (0x07, bge)
op (0x08, bne)
op (0x09, beq)
op (0x0a, bpl)
op (0x0b, bmi)
op (0x0c, bcc)
op (0x0d, bcs)
op (0x0e, bvc)
op (0x0f, bvs)
op16 (0x10, to_r)
op16 (0x20, with_r)
op12 (0x30, stw_ir)
op (0x3c, loop)
op (0x3d, alt1)
op (0x3e, alt2)
op (0x3f, alt3)
op12 (0x40, ldw_ir)
op (0x4c, plot)
op (0x4d, swap)
op (0x4e, color)
op (0x4f, not)
op16 (0x50, add_i)
op16 (0x60, sub_i)
op (0x70, merge)
op15h(0x71, and_i)
op16 (0x80, mult_i)
op (0x90, sbk)
op4 (0x91, link)
op (0x95, sex)
op (0x96, asr)
op (0x97, ror)
op6 (0x98, jmp_r)
op (0x9e, lob)
op (0x9f, fmult)
op16 (0xa0, sms_r)
op16 (0xb0, from_r)
op (0xc0, hib)
op15h(0xc1, or_i)
op15l(0xd0, inc_r)
op (0xdf, ramb)
op15l(0xe0, dec_r)
op (0xef, getbl)
op16 (0xf0, sm_r)
#undef op
//======
// ALT3
//======
#define op(id, name) opcode_table[768 + id] = &SuperFX::op_##name;
op (0x00, stop)
op (0x01, nop)
op (0x02, cache)
op (0x03, lsr)
op (0x04, rol)
op (0x05, bra)
op (0x06, blt)
op (0x07, bge)
op (0x08, bne)
op (0x09, beq)
op (0x0a, bpl)
op (0x0b, bmi)
op (0x0c, bcc)
op (0x0d, bcs)
op (0x0e, bvc)
op (0x0f, bvs)
op16 (0x10, to_r)
op16 (0x20, with_r)
op12 (0x30, stb_ir)
op (0x3c, loop)
op (0x3d, alt1)
op (0x3e, alt2)
op (0x3f, alt3)
op12 (0x40, ldb_ir)
op (0x4c, rpix)
op (0x4d, swap)
op (0x4e, cmode)
op (0x4f, not)
op16 (0x50, adc_i)
op16 (0x60, cmp_r)
op (0x70, merge)
op15h(0x71, bic_i)
op16 (0x80, umult_i)
op (0x90, sbk)
op4 (0x91, link)
op (0x95, sex)
op (0x96, div2)
op (0x97, ror)
op6 (0x98, ljmp_r)
op (0x9e, lob)
op (0x9f, lmult)
op16 (0xa0, lms_r)
op16 (0xb0, from_r)
op (0xc0, hib)
op15h(0xc1, xor_i)
op15l(0xd0, inc_r)
op (0xdf, romb)
op15l(0xe0, dec_r)
op (0xef, getbs)
op16 (0xf0, lm_r)
#undef op
#undef op4
#undef op6
#undef op12
#undef op15l
#undef op15h
#undef op16
}
#endif

View File

@@ -0,0 +1,661 @@
#ifdef SUPERFX_CPP
//$00 stop
void SuperFX::op_stop() {
if(regs.cfgr.irq == 0) {
regs.sfr.irq = 1;
cpu.regs.irq = 1;
}
regs.sfr.g = 0;
regs.pipeline = 0x01;
regs.reset();
}
//$01 nop
void SuperFX::op_nop() {
regs.reset();
}
//$02 cache
void SuperFX::op_cache() {
if(regs.cbr != (regs.r[15] & 0xfff0)) {
regs.cbr = regs.r[15] & 0xfff0;
cache_flush();
}
regs.reset();
}
//$03 lsr
void SuperFX::op_lsr() {
regs.sfr.cy = (regs.sr() & 1);
regs.dr() = regs.sr() >> 1;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$04 rol
void SuperFX::op_rol() {
bool carry = (regs.sr() & 0x8000);
regs.dr() = (regs.sr() << 1) | regs.sfr.cy;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.cy = carry;
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$05 bra e
void SuperFX::op_bra() {
regs.r[15] += (int8)pipe();
}
//$06 blt e
void SuperFX::op_blt() {
int e = (int8)pipe();
if((regs.sfr.s ^ regs.sfr.ov) == 0) regs.r[15] += e;
}
//$07 bge e
void SuperFX::op_bge() {
int e = (int8)pipe();
if((regs.sfr.s ^ regs.sfr.ov) == 1) regs.r[15] += e;
}
//$08 bne e
void SuperFX::op_bne() {
int e = (int8)pipe();
if(regs.sfr.z == 0) regs.r[15] += e;
}
//$09 beq e
void SuperFX::op_beq() {
int e = (int8)pipe();
if(regs.sfr.z == 1) regs.r[15] += e;
}
//$0a bpl e
void SuperFX::op_bpl() {
int e = (int8)pipe();
if(regs.sfr.s == 0) regs.r[15] += e;
}
//$0b bmi e
void SuperFX::op_bmi() {
int e = (int8)pipe();
if(regs.sfr.s == 1) regs.r[15] += e;
}
//$0c bcc e
void SuperFX::op_bcc() {
int e = (int8)pipe();
if(regs.sfr.cy == 0) regs.r[15] += e;
}
//$0d bcs e
void SuperFX::op_bcs() {
int e = (int8)pipe();
if(regs.sfr.cy == 1) regs.r[15] += e;
}
//$0e bvc e
void SuperFX::op_bvc() {
int e = (int8)pipe();
if(regs.sfr.ov == 0) regs.r[15] += e;
}
//$0f bvs e
void SuperFX::op_bvs() {
int e = (int8)pipe();
if(regs.sfr.ov == 1) regs.r[15] += e;
}
//$10-1f(b0): to rN
//$10-1f(b1): move rN
template<int n> void SuperFX::op_to_r() {
if(regs.sfr.b == 0) {
regs.dreg = n;
} else {
regs.r[n] = regs.sr();
regs.reset();
}
}
//$20-2f: with rN
template<int n> void SuperFX::op_with_r() {
regs.sreg = n;
regs.dreg = n;
regs.sfr.b = 1;
}
//$30-3b(alt0): stw (rN)
template<int n> void SuperFX::op_stw_ir() {
regs.ramaddr = regs.r[n];
rambuffer_write(regs.ramaddr ^ 0, regs.sr() >> 0);
rambuffer_write(regs.ramaddr ^ 1, regs.sr() >> 8);
regs.reset();
}
//$30-3b(alt1): stb (rN)
template<int n> void SuperFX::op_stb_ir() {
regs.ramaddr = regs.r[n];
rambuffer_write(regs.ramaddr, regs.sr());
regs.reset();
}
//$3c loop
void SuperFX::op_loop() {
regs.r[12]--;
regs.sfr.s = (regs.r[12] & 0x8000);
regs.sfr.z = (regs.r[12] == 0);
if(!regs.sfr.z) regs.r[15] = regs.r[13];
regs.reset();
}
//$3d alt1
void SuperFX::op_alt1() {
regs.sfr.b = 0;
regs.sfr.alt1 = 1;
}
//$3e alt2
void SuperFX::op_alt2() {
regs.sfr.b = 0;
regs.sfr.alt2 = 1;
}
//$3f alt3
void SuperFX::op_alt3() {
regs.sfr.b = 0;
regs.sfr.alt1 = 1;
regs.sfr.alt2 = 1;
}
//$40-4b(alt0): ldw (rN)
template<int n> void SuperFX::op_ldw_ir() {
regs.ramaddr = regs.r[n];
uint16_t data;
data = rambuffer_read(regs.ramaddr ^ 0) << 0;
data |= rambuffer_read(regs.ramaddr ^ 1) << 8;
regs.dr() = data;
regs.reset();
}
//$40-4b(alt1): ldb (rN)
template<int n> void SuperFX::op_ldb_ir() {
regs.ramaddr = regs.r[n];
regs.dr() = rambuffer_read(regs.ramaddr);
regs.reset();
}
//$4c(alt0): plot
void SuperFX::op_plot() {
plot(regs.r[1], regs.r[2]);
regs.r[1]++;
regs.reset();
}
//$4c(alt1): rpix
void SuperFX::op_rpix() {
regs.dr() = rpix(regs.r[1], regs.r[2]);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$4d: swap
void SuperFX::op_swap() {
regs.dr() = (regs.sr() >> 8) | (regs.sr() << 8);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$4e(alt0): color
void SuperFX::op_color() {
regs.colr = color(regs.sr());
regs.reset();
}
//$4e(alt1): cmode
void SuperFX::op_cmode() {
regs.por = regs.sr();
regs.reset();
}
//$4f: not
void SuperFX::op_not() {
regs.dr() = ~regs.sr();
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$50-5f(alt0): add rN
template<int n> void SuperFX::op_add_r() {
int r = regs.sr() + regs.r[n];
regs.sfr.ov = ~(regs.sr() ^ regs.r[n]) & (regs.r[n] ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0x10000);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$50-5f(alt1): adc rN
template<int n> void SuperFX::op_adc_r() {
int r = regs.sr() + regs.r[n] + regs.sfr.cy;
regs.sfr.ov = ~(regs.sr() ^ regs.r[n]) & (regs.r[n] ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0x10000);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$50-5f(alt2): add #N
template<int n> void SuperFX::op_add_i() {
int r = regs.sr() + n;
regs.sfr.ov = ~(regs.sr() ^ n) & (n ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0x10000);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$50-5f(alt3): adc #N
template<int n> void SuperFX::op_adc_i() {
int r = regs.sr() + n + regs.sfr.cy;
regs.sfr.ov = ~(regs.sr() ^ n) & (n ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0x10000);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$60-6f(alt0): sub rN
template<int n> void SuperFX::op_sub_r() {
int r = regs.sr() - regs.r[n];
regs.sfr.ov = (regs.sr() ^ regs.r[n]) & (regs.sr() ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$60-6f(alt1): sbc rN
template<int n> void SuperFX::op_sbc_r() {
int r = regs.sr() - regs.r[n] - !regs.sfr.cy;
regs.sfr.ov = (regs.sr() ^ regs.r[n]) & (regs.sr() ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$60-6f(alt2): sub #N
template<int n> void SuperFX::op_sub_i() {
int r = regs.sr() - n;
regs.sfr.ov = (regs.sr() ^ n) & (regs.sr() ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0);
regs.sfr.z = ((uint16_t)r == 0);
regs.dr() = r;
regs.reset();
}
//$60-6f(alt3): cmp rN
template<int n> void SuperFX::op_cmp_r() {
int r = regs.sr() - regs.r[n];
regs.sfr.ov = (regs.sr() ^ regs.r[n]) & (regs.sr() ^ r) & 0x8000;
regs.sfr.s = (r & 0x8000);
regs.sfr.cy = (r >= 0);
regs.sfr.z = ((uint16_t)r == 0);
regs.reset();
}
//$70: merge
void SuperFX::op_merge() {
regs.dr() = (regs.r[7] & 0xff00) | (regs.r[8] >> 8);
regs.sfr.ov = (regs.dr() & 0xc0c0);
regs.sfr.s = (regs.dr() & 0x8080);
regs.sfr.cy = (regs.dr() & 0xe0e0);
regs.sfr.z = (regs.dr() & 0xf0f0);
regs.reset();
}
//$71-7f(alt0): and rN
template<int n> void SuperFX::op_and_r() {
regs.dr() = regs.sr() & regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$71-7f(alt1): bic rN
template<int n> void SuperFX::op_bic_r() {
regs.dr() = regs.sr() & ~regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$71-7f(alt2): and #N
template<int n> void SuperFX::op_and_i() {
regs.dr() = regs.sr() & n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$71-7f(alt3): bic #N
template<int n> void SuperFX::op_bic_i() {
regs.dr() = regs.sr() & ~n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$80-8f(alt0): mult rN
template<int n> void SuperFX::op_mult_r() {
regs.dr() = (int8)regs.sr() * (int8)regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
if(!regs.cfgr.ms0) add_clocks(2);
}
//$80-8f(alt1): umult rN
template<int n> void SuperFX::op_umult_r() {
regs.dr() = (uint8)regs.sr() * (uint8)regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
if(!regs.cfgr.ms0) add_clocks(2);
}
//$80-8f(alt2): mult #N
template<int n> void SuperFX::op_mult_i() {
regs.dr() = (int8)regs.sr() * (int8)n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
if(!regs.cfgr.ms0) add_clocks(2);
}
//$80-8f(alt3): umult #N
template<int n> void SuperFX::op_umult_i() {
regs.dr() = (uint8)regs.sr() * (uint8)n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
if(!regs.cfgr.ms0) add_clocks(2);
}
//$90: sbk
void SuperFX::op_sbk() {
rambuffer_write(regs.ramaddr ^ 0, regs.sr() >> 0);
rambuffer_write(regs.ramaddr ^ 1, regs.sr() >> 8);
regs.reset();
}
//$91-94: link #N
template<int n> void SuperFX::op_link() {
regs.r[11] = regs.r[15] + n;
regs.reset();
}
//$95: sex
void SuperFX::op_sex() {
regs.dr() = (int8)regs.sr();
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$96(alt0): asr
void SuperFX::op_asr() {
regs.sfr.cy = (regs.sr() & 1);
regs.dr() = (int16_t)regs.sr() >> 1;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$96(alt1): div2
void SuperFX::op_div2() {
regs.sfr.cy = (regs.sr() & 1);
regs.dr() = ((int16_t)regs.sr() >> 1) + ((regs.sr() + 1) >> 16);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$97: ror
void SuperFX::op_ror() {
bool carry = (regs.sr() & 1);
regs.dr() = (regs.sfr.cy << 15) | (regs.sr() >> 1);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.cy = carry;
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$98-9d(alt0): jmp rN
template<int n> void SuperFX::op_jmp_r() {
regs.r[15] = regs.r[n];
regs.reset();
}
//$98-9d(alt1): ljmp rN
template<int n> void SuperFX::op_ljmp_r() {
regs.pbr = regs.r[n] & 0x7f;
regs.r[15] = regs.sr();
regs.cbr = regs.r[15] & 0xfff0;
cache_flush();
regs.reset();
}
//$9e: lob
void SuperFX::op_lob() {
regs.dr() = regs.sr() & 0xff;
regs.sfr.s = (regs.dr() & 0x80);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$9f(alt0): fmult
void SuperFX::op_fmult() {
uint32_t result = (int16_t)regs.sr() * (int16_t)regs.r[6];
regs.dr() = result >> 16;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.cy = (result & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
add_clocks(4 + (regs.cfgr.ms0 << 2));
}
//$9f(alt1): lmult
void SuperFX::op_lmult() {
uint32_t result = (int16_t)regs.sr() * (int16_t)regs.r[6];
regs.r[4] = result;
regs.dr() = result >> 16;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.cy = (result & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
add_clocks(4 + (regs.cfgr.ms0 << 2));
}
//$a0-af(alt0): ibt rN,#pp
template<int n> void SuperFX::op_ibt_r() {
regs.r[n] = (int8)pipe();
regs.reset();
}
//$a0-af(alt1): lms rN,(yy)
template<int n> void SuperFX::op_lms_r() {
regs.ramaddr = pipe() << 1;
uint16_t data;
data = rambuffer_read(regs.ramaddr ^ 0) << 0;
data |= rambuffer_read(regs.ramaddr ^ 1) << 8;
regs.r[n] = data;
regs.reset();
}
//$a0-af(alt2): sms (yy),rN
template<int n> void SuperFX::op_sms_r() {
regs.ramaddr = pipe() << 1;
rambuffer_write(regs.ramaddr ^ 0, regs.r[n] >> 0);
rambuffer_write(regs.ramaddr ^ 1, regs.r[n] >> 8);
regs.reset();
}
//$b0-bf(b0): from rN
//$b0-bf(b1): moves rN
template<int n> void SuperFX::op_from_r() {
if(regs.sfr.b == 0) {
regs.sreg = n;
} else {
regs.dr() = regs.r[n];
regs.sfr.ov = (regs.dr() & 0x80);
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
}
//$c0: hib
void SuperFX::op_hib() {
regs.dr() = regs.sr() >> 8;
regs.sfr.s = (regs.dr() & 0x80);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$c1-cf(alt0): or rN
template<int n> void SuperFX::op_or_r() {
regs.dr() = regs.sr() | regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$c1-cf(alt1): xor rN
template<int n> void SuperFX::op_xor_r() {
regs.dr() = regs.sr() ^ regs.r[n];
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$c1-cf(alt2): or #N
template<int n> void SuperFX::op_or_i() {
regs.dr() = regs.sr() | n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$c1-cf(alt3): xor #N
template<int n> void SuperFX::op_xor_i() {
regs.dr() = regs.sr() ^ n;
regs.sfr.s = (regs.dr() & 0x8000);
regs.sfr.z = (regs.dr() == 0);
regs.reset();
}
//$d0-de: inc rN
template<int n> void SuperFX::op_inc_r() {
regs.r[n]++;
regs.sfr.s = (regs.r[n] & 0x8000);
regs.sfr.z = (regs.r[n] == 0);
regs.reset();
}
//$df(alt0): getc
void SuperFX::op_getc() {
regs.colr = color(rombuffer_read());
regs.reset();
}
//$df(alt2): ramb
void SuperFX::op_ramb() {
rambuffer_sync();
regs.rambr = regs.sr();
regs.reset();
}
//$df(alt3): romb
void SuperFX::op_romb() {
rombuffer_sync();
regs.rombr = regs.sr() & 0x7f;
regs.reset();
}
//$e0-ee: dec rN
template<int n> void SuperFX::op_dec_r() {
regs.r[n]--;
regs.sfr.s = (regs.r[n] & 0x8000);
regs.sfr.z = (regs.r[n] == 0);
regs.reset();
}
//$ef(alt0): getb
void SuperFX::op_getb() {
regs.dr() = rombuffer_read();
regs.reset();
}
//$ef(alt1): getbh
void SuperFX::op_getbh() {
regs.dr() = (rombuffer_read() << 8) | (regs.sr() & 0x00ff);
regs.reset();
}
//$ef(alt2): getbl
void SuperFX::op_getbl() {
regs.dr() = (regs.sr() & 0xff00) | (rombuffer_read() << 0);
regs.reset();
}
//$ef(alt3): getbs
void SuperFX::op_getbs() {
regs.dr() = (int8)rombuffer_read();
regs.reset();
}
//$f0-ff(alt0): iwt rN,#xx
template<int n> void SuperFX::op_iwt_r() {
uint16_t data;
data = pipe() << 0;
data |= pipe() << 8;
regs.r[n] = data;
regs.reset();
}
//$f0-ff(alt1): lm rN,(xx)
template<int n> void SuperFX::op_lm_r() {
regs.ramaddr = pipe() << 0;
regs.ramaddr |= pipe() << 8;
uint16_t data;
data = rambuffer_read(regs.ramaddr ^ 0) << 0;
data |= rambuffer_read(regs.ramaddr ^ 1) << 8;
regs.r[n] = data;
regs.reset();
}
//$f0-ff(alt2): sm (xx),rN
template<int n> void SuperFX::op_sm_r() {
regs.ramaddr = pipe() << 0;
regs.ramaddr |= pipe() << 8;
rambuffer_write(regs.ramaddr ^ 0, regs.r[n] >> 0);
rambuffer_write(regs.ramaddr ^ 1, regs.r[n] >> 8);
regs.reset();
}
#endif

View File

@@ -0,0 +1,176 @@
//accepts a callback binding so r14 writes can trigger ROM buffering transparently
struct reg16_t {
uint16 data;
function<void (uint16)> on_modify;
inline operator unsigned() const { return data; }
inline uint16 assign(uint16 i) {
if(on_modify) on_modify(i);
else data = i;
return data;
}
inline unsigned operator++() { return assign(data + 1); }
inline unsigned operator--() { return assign(data - 1); }
inline unsigned operator++(int) { unsigned r = data; assign(data + 1); return r; }
inline unsigned operator--(int) { unsigned r = data; assign(data - 1); return r; }
inline unsigned operator = (unsigned i) { return assign(i); }
inline unsigned operator |= (unsigned i) { return assign(data | i); }
inline unsigned operator ^= (unsigned i) { return assign(data ^ i); }
inline unsigned operator &= (unsigned i) { return assign(data & i); }
inline unsigned operator <<= (unsigned i) { return assign(data << i); }
inline unsigned operator >>= (unsigned i) { return assign(data >> i); }
inline unsigned operator += (unsigned i) { return assign(data + i); }
inline unsigned operator -= (unsigned i) { return assign(data - i); }
inline unsigned operator *= (unsigned i) { return assign(data * i); }
inline unsigned operator /= (unsigned i) { return assign(data / i); }
inline unsigned operator %= (unsigned i) { return assign(data % i); }
inline unsigned operator = (const reg16_t& i) { return assign(i); }
reg16_t() : data(0) {}
reg16_t(const reg16_t&) = delete;
};
struct sfr_t {
bool irq; //interrupt flag
bool b; //WITH flag
bool ih; //immediate higher 8-bit flag
bool il; //immediate lower 8-bit flag
bool alt2; //ALT2 mode
bool alt1; //ALT2 instruction mode
bool r; //ROM r14 read flag
bool g; //GO flag
bool ov; //overflow flag
bool s; //sign flag
bool cy; //carry flag
bool z; //zero flag
operator unsigned() const {
return (irq << 15) | (b << 12) | (ih << 11) | (il << 10) | (alt2 << 9) | (alt1 << 8)
| (r << 6) | (g << 5) | (ov << 4) | (s << 3) | (cy << 2) | (z << 1);
}
sfr_t& operator=(uint16_t data) {
irq = data & 0x8000;
b = data & 0x1000;
ih = data & 0x0800;
il = data & 0x0400;
alt2 = data & 0x0200;
alt1 = data & 0x0100;
r = data & 0x0040;
g = data & 0x0020;
ov = data & 0x0010;
s = data & 0x0008;
cy = data & 0x0004;
z = data & 0x0002;
return *this;
}
};
struct scmr_t {
unsigned ht;
bool ron;
bool ran;
unsigned md;
operator unsigned() const {
return ((ht >> 1) << 5) | (ron << 4) | (ran << 3) | ((ht & 1) << 2) | (md);
}
scmr_t& operator=(uint8 data) {
ht = (bool)(data & 0x20) << 1;
ht |= (bool)(data & 0x04) << 0;
ron = data & 0x10;
ran = data & 0x08;
md = data & 0x03;
return *this;
}
};
struct por_t {
bool obj;
bool freezehigh;
bool highnibble;
bool dither;
bool transparent;
operator unsigned() const {
return (obj << 4) | (freezehigh << 3) | (highnibble << 2) | (dither << 1) | (transparent);
}
por_t& operator=(uint8 data) {
obj = data & 0x10;
freezehigh = data & 0x08;
highnibble = data & 0x04;
dither = data & 0x02;
transparent = data & 0x01;
return *this;
}
};
struct cfgr_t {
bool irq;
bool ms0;
operator unsigned() const {
return (irq << 7) | (ms0 << 5);
}
cfgr_t& operator=(uint8 data) {
irq = data & 0x80;
ms0 = data & 0x20;
return *this;
}
};
struct regs_t {
uint8 pipeline;
uint16 ramaddr;
reg16_t r[16]; //general purpose registers
sfr_t sfr; //status flag register
uint8 pbr; //program bank register
uint8 rombr; //game pack ROM bank register
bool rambr; //game pack RAM bank register
uint16 cbr; //cache base register
uint8 scbr; //screen base register
scmr_t scmr; //screen mode register
uint8 colr; //color register
por_t por; //plot option register
bool bramr; //back-up RAM register
uint8 vcr; //version code register
cfgr_t cfgr; //config register
bool clsr; //clock select register
unsigned romcl; //clock ticks until romdr is valid
uint8 romdr; //ROM buffer data register
unsigned ramcl; //clock ticks until ramdr is valid
uint16 ramar; //RAM buffer address register
uint8 ramdr; //RAM buffer data register
unsigned sreg, dreg;
reg16_t& sr() { return r[sreg]; } //source register (from)
reg16_t& dr() { return r[dreg]; } //destination register (to)
void reset() {
sfr.b = 0;
sfr.alt1 = 0;
sfr.alt2 = 0;
sreg = 0;
dreg = 0;
}
} regs;
struct cache_t {
uint8 buffer[512];
bool valid[32];
} cache;
struct pixelcache_t {
uint16 offset;
uint8 bitpend;
uint8 data[8];
} pixelcache[2];

View File

@@ -0,0 +1,279 @@
#ifdef SUPERFX_CPP
void SuperFX::disassemble_opcode(char *output) {
*output = 0;
if(!regs.sfr.alt2) {
if(!regs.sfr.alt1) {
disassemble_alt0(output);
} else {
disassemble_alt1(output);
}
} else {
if(!regs.sfr.alt1) {
disassemble_alt2(output);
} else {
disassemble_alt3(output);
}
}
unsigned length = strlen(output);
while(length++ < 20) strcat(output, " ");
}
#define case4(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3
#define case6(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3: case id+ 4: case id+ 5
#define case12(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3: case id+ 4: case id+ 5: case id+ 6: case id+ 7: \
case id+ 8: case id+ 9: case id+10: case id+11
#define case15(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3: case id+ 4: case id+ 5: case id+ 6: case id+ 7: \
case id+ 8: case id+ 9: case id+10: case id+11: case id+12: case id+13: case id+14
#define case16(id) \
case id+ 0: case id+ 1: case id+ 2: case id+ 3: case id+ 4: case id+ 5: case id+ 6: case id+ 7: \
case id+ 8: case id+ 9: case id+10: case id+11: case id+12: case id+13: case id+14: case id+15
#define op0 regs.pipeline
#define op1 superfxbus.read((regs.pbr << 16) + regs.r[15] + 0)
#define op2 superfxbus.read((regs.pbr << 16) + regs.r[15] + 1)
void SuperFX::disassemble_alt0(char *output) {
char t[256] = "";
switch(op0) {
case (0x00): sprintf(t, "stop"); break;
case (0x01): sprintf(t, "nop"); break;
case (0x02): sprintf(t, "cache"); break;
case (0x03): sprintf(t, "lsr"); break;
case (0x04): sprintf(t, "rol"); break;
case (0x05): sprintf(t, "bra %+d", (int8_t)op1); break;
case (0x06): sprintf(t, "blt %+d", (int8_t)op1); break;
case (0x07): sprintf(t, "bge %+d", (int8_t)op1); break;
case (0x08): sprintf(t, "bne %+d", (int8_t)op1); break;
case (0x09): sprintf(t, "beq %+d", (int8_t)op1); break;
case (0x0a): sprintf(t, "bpl %+d", (int8_t)op1); break;
case (0x0b): sprintf(t, "bmi %+d", (int8_t)op1); break;
case (0x0c): sprintf(t, "bcc %+d", (int8_t)op1); break;
case (0x0d): sprintf(t, "bcs %+d", (int8_t)op1); break;
case (0x0e): sprintf(t, "bvc %+d", (int8_t)op1); break;
case (0x0f): sprintf(t, "bvs %+d", (int8_t)op1); break;
case16(0x10): sprintf(t, "to r%u", op0 & 15); break;
case16(0x20): sprintf(t, "with r%u", op0 & 15); break;
case12(0x30): sprintf(t, "stw (r%u)", op0 & 15); break;
case (0x3c): sprintf(t, "loop"); break;
case (0x3d): sprintf(t, "alt1"); break;
case (0x3e): sprintf(t, "alt2"); break;
case (0x3f): sprintf(t, "alt3"); break;
case12(0x40): sprintf(t, "ldw (r%u)", op0 & 15); break;
case (0x4c): sprintf(t, "plot"); break;
case (0x4d): sprintf(t, "swap"); break;
case (0x4e): sprintf(t, "color"); break;
case (0x4f): sprintf(t, "not"); break;
case16(0x50): sprintf(t, "add r%u", op0 & 15); break;
case16(0x60): sprintf(t, "sub r%u", op0 & 15); break;
case (0x70): sprintf(t, "merge"); break;
case15(0x71): sprintf(t, "and r%u", op0 & 15); break;
case16(0x80): sprintf(t, "mult r%u", op0 & 15); break;
case (0x90): sprintf(t, "sbk"); break;
case4 (0x91): sprintf(t, "link #%u", op0 & 15); break;
case (0x95): sprintf(t, "sex"); break;
case (0x96): sprintf(t, "asr"); break;
case (0x97): sprintf(t, "ror"); break;
case6 (0x98): sprintf(t, "jmp r%u", op0 & 15); break;
case (0x9e): sprintf(t, "lob"); break;
case (0x9f): sprintf(t, "fmult"); break;
case16(0xa0): sprintf(t, "ibt r%u,#$%.2x", op0 & 15, op1); break;
case16(0xb0): sprintf(t, "from r%u", op0 & 15); break;
case (0xc0): sprintf(t, "hib");
case15(0xc1): sprintf(t, "or r%u", op0 & 15); break;
case15(0xd0): sprintf(t, "inc r%u", op0 & 15); break;
case (0xdf): sprintf(t, "getc"); break;
case15(0xe0): sprintf(t, "dec r%u", op0 & 15); break;
case (0xef): sprintf(t, "getb"); break;
case16(0xf0): sprintf(t, "iwt r%u,#$%.2x%.2x", op0 & 15, op2, op1); break;
}
strcat(output, t);
}
void SuperFX::disassemble_alt1(char *output) {
char t[256] = "";
switch(op0) {
case (0x00): sprintf(t, "stop"); break;
case (0x01): sprintf(t, "nop"); break;
case (0x02): sprintf(t, "cache"); break;
case (0x03): sprintf(t, "lsr"); break;
case (0x04): sprintf(t, "rol"); break;
case (0x05): sprintf(t, "bra %+d", (int8_t)op1); break;
case (0x06): sprintf(t, "blt %+d", (int8_t)op1); break;
case (0x07): sprintf(t, "bge %+d", (int8_t)op1); break;
case (0x08): sprintf(t, "bne %+d", (int8_t)op1); break;
case (0x09): sprintf(t, "beq %+d", (int8_t)op1); break;
case (0x0a): sprintf(t, "bpl %+d", (int8_t)op1); break;
case (0x0b): sprintf(t, "bmi %+d", (int8_t)op1); break;
case (0x0c): sprintf(t, "bcc %+d", (int8_t)op1); break;
case (0x0d): sprintf(t, "bcs %+d", (int8_t)op1); break;
case (0x0e): sprintf(t, "bvc %+d", (int8_t)op1); break;
case (0x0f): sprintf(t, "bvs %+d", (int8_t)op1); break;
case16(0x10): sprintf(t, "to r%u", op0 & 15); break;
case16(0x20): sprintf(t, "with r%u", op0 & 15); break;
case12(0x30): sprintf(t, "stb (r%u)", op0 & 15); break;
case (0x3c): sprintf(t, "loop"); break;
case (0x3d): sprintf(t, "alt1"); break;
case (0x3e): sprintf(t, "alt2"); break;
case (0x3f): sprintf(t, "alt3"); break;
case12(0x40): sprintf(t, "ldb (r%u)", op0 & 15); break;
case (0x4c): sprintf(t, "rpix"); break;
case (0x4d): sprintf(t, "swap"); break;
case (0x4e): sprintf(t, "cmode"); break;
case (0x4f): sprintf(t, "not"); break;
case16(0x50): sprintf(t, "adc r%u", op0 & 15); break;
case16(0x60): sprintf(t, "sbc r%u", op0 & 15); break;
case (0x70): sprintf(t, "merge"); break;
case15(0x71): sprintf(t, "bic r%u", op0 & 15); break;
case16(0x80): sprintf(t, "umult r%u", op0 & 15); break;
case (0x90): sprintf(t, "sbk"); break;
case4 (0x91): sprintf(t, "link #%u", op0 & 15); break;
case (0x95): sprintf(t, "sex"); break;
case (0x96): sprintf(t, "div2"); break;
case (0x97): sprintf(t, "ror"); break;
case6 (0x98): sprintf(t, "ljmp r%u", op0 & 15); break;
case (0x9e): sprintf(t, "lob"); break;
case (0x9f): sprintf(t, "lmult"); break;
case16(0xa0): sprintf(t, "lms r%u,(#$%.4x)", op0 & 15, op1 << 1); break;
case16(0xb0): sprintf(t, "from r%u", op0 & 15); break;
case (0xc0): sprintf(t, "hib"); break;
case15(0xc1): sprintf(t, "xor r%u", op0 & 15); break;
case15(0xd0): sprintf(t, "inc r%u", op0 & 15); break;
case (0xdf): sprintf(t, "getc"); break;
case15(0xe0): sprintf(t, "dec r%u", op0 & 15); break;
case (0xef): sprintf(t, "getbh"); break;
case16(0xf0): sprintf(t, "lm r%u", op0 & 15); break;
}
strcat(output, t);
}
void SuperFX::disassemble_alt2(char *output) {
char t[256] = "";
switch(op0) {
case (0x00): sprintf(t, "stop"); break;
case (0x01): sprintf(t, "nop"); break;
case (0x02): sprintf(t, "cache"); break;
case (0x03): sprintf(t, "lsr"); break;
case (0x04): sprintf(t, "rol"); break;
case (0x05): sprintf(t, "bra %+d", (int8_t)op1); break;
case (0x06): sprintf(t, "blt %+d", (int8_t)op1); break;
case (0x07): sprintf(t, "bge %+d", (int8_t)op1); break;
case (0x08): sprintf(t, "bne %+d", (int8_t)op1); break;
case (0x09): sprintf(t, "beq %+d", (int8_t)op1); break;
case (0x0a): sprintf(t, "bpl %+d", (int8_t)op1); break;
case (0x0b): sprintf(t, "bmi %+d", (int8_t)op1); break;
case (0x0c): sprintf(t, "bcc %+d", (int8_t)op1); break;
case (0x0d): sprintf(t, "bcs %+d", (int8_t)op1); break;
case (0x0e): sprintf(t, "bvc %+d", (int8_t)op1); break;
case (0x0f): sprintf(t, "bvs %+d", (int8_t)op1); break;
case16(0x10): sprintf(t, "to r%u", op0 & 15); break;
case16(0x20): sprintf(t, "with r%u", op0 & 15); break;
case12(0x30): sprintf(t, "stw (r%u)", op0 & 15); break;
case (0x3c): sprintf(t, "loop"); break;
case (0x3d): sprintf(t, "alt1"); break;
case (0x3e): sprintf(t, "alt2"); break;
case (0x3f): sprintf(t, "alt3"); break;
case12(0x40): sprintf(t, "ldw (r%u)", op0 & 15); break;
case (0x4c): sprintf(t, "plot"); break;
case (0x4d): sprintf(t, "swap"); break;
case (0x4e): sprintf(t, "color"); break;
case (0x4f): sprintf(t, "not"); break;
case16(0x50): sprintf(t, "add #%u", op0 & 15); break;
case16(0x60): sprintf(t, "sub #%u", op0 & 15); break;
case (0x70): sprintf(t, "merge"); break;
case15(0x71): sprintf(t, "and #%u", op0 & 15); break;
case16(0x80): sprintf(t, "mult #%u", op0 & 15); break;
case (0x90): sprintf(t, "sbk"); break;
case4 (0x91): sprintf(t, "link #%u", op0 & 15); break;
case (0x95): sprintf(t, "sex"); break;
case (0x96): sprintf(t, "asr"); break;
case (0x97): sprintf(t, "ror"); break;
case6 (0x98): sprintf(t, "jmp r%u", op0 & 15); break;
case (0x9e): sprintf(t, "lob"); break;
case (0x9f): sprintf(t, "fmult"); break;
case16(0xa0): sprintf(t, "sms r%u,(#$%.4x)", op0 & 15, op1 << 1); break;
case16(0xb0): sprintf(t, "from r%u", op0 & 15); break;
case (0xc0): sprintf(t, "hib"); break;
case15(0xc1): sprintf(t, "or #%u", op0 & 15); break;
case15(0xd0): sprintf(t, "inc r%u", op0 & 15); break;
case (0xdf): sprintf(t, "ramb"); break;
case15(0xe0): sprintf(t, "dec r%u", op0 & 15); break;
case (0xef): sprintf(t, "getbl"); break;
case16(0xf0): sprintf(t, "sm r%u", op0 & 15); break;
}
strcat(output, t);
}
void SuperFX::disassemble_alt3(char *output) {
char t[256] = "";
switch(op0) {
case (0x00): sprintf(t, "stop"); break;
case (0x01): sprintf(t, "nop"); break;
case (0x02): sprintf(t, "cache"); break;
case (0x03): sprintf(t, "lsr"); break;
case (0x04): sprintf(t, "rol"); break;
case (0x05): sprintf(t, "bra %+d", (int8_t)op1); break;
case (0x06): sprintf(t, "blt %+d", (int8_t)op1); break;
case (0x07): sprintf(t, "bge %+d", (int8_t)op1); break;
case (0x08): sprintf(t, "bne %+d", (int8_t)op1); break;
case (0x09): sprintf(t, "beq %+d", (int8_t)op1); break;
case (0x0a): sprintf(t, "bpl %+d", (int8_t)op1); break;
case (0x0b): sprintf(t, "bmi %+d", (int8_t)op1); break;
case (0x0c): sprintf(t, "bcc %+d", (int8_t)op1); break;
case (0x0d): sprintf(t, "bcs %+d", (int8_t)op1); break;
case (0x0e): sprintf(t, "bvc %+d", (int8_t)op1); break;
case (0x0f): sprintf(t, "bvs %+d", (int8_t)op1); break;
case16(0x10): sprintf(t, "to r%u", op0 & 15); break;
case16(0x20): sprintf(t, "with r%u", op0 & 15); break;
case12(0x30): sprintf(t, "stb (r%u)", op0 & 15); break;
case (0x3c): sprintf(t, "loop"); break;
case (0x3d): sprintf(t, "alt1"); break;
case (0x3e): sprintf(t, "alt2"); break;
case (0x3f): sprintf(t, "alt3"); break;
case12(0x40): sprintf(t, "ldb (r%u)", op0 & 15); break;
case (0x4c): sprintf(t, "rpix"); break;
case (0x4d): sprintf(t, "swap"); break;
case (0x4e): sprintf(t, "cmode"); break;
case (0x4f): sprintf(t, "not"); break;
case16(0x50): sprintf(t, "adc #%u", op0 & 15); break;
case16(0x60): sprintf(t, "cmp r%u", op0 & 15); break;
case (0x70): sprintf(t, "merge"); break;
case15(0x71): sprintf(t, "bic #%u", op0 & 15); break;
case16(0x80): sprintf(t, "umult #%u", op0 & 15); break;
case (0x90): sprintf(t, "sbk"); break;
case4 (0x91): sprintf(t, "link #%u", op0 & 15); break;
case (0x95): sprintf(t, "sex"); break;
case (0x96): sprintf(t, "div2"); break;
case (0x97): sprintf(t, "ror"); break;
case6 (0x98): sprintf(t, "ljmp r%u", op0 & 15); break;
case (0x9e): sprintf(t, "lob"); break;
case (0x9f): sprintf(t, "lmult"); break;
case16(0xa0): sprintf(t, "lms r%u", op0 & 15); break;
case16(0xb0): sprintf(t, "from r%u", op0 & 15); break;
case (0xc0): sprintf(t, "hib"); break;
case15(0xc1): sprintf(t, "xor #%u", op0 & 15); break;
case15(0xd0): sprintf(t, "inc r%u", op0 & 15); break;
case (0xdf): sprintf(t, "romb"); break;
case15(0xe0): sprintf(t, "dec r%u", op0 & 15); break;
case (0xef): sprintf(t, "getbs"); break;
case16(0xf0): sprintf(t, "lm r%u", op0 & 15); break;
}
strcat(output, t);
}
#undef case4
#undef case6
#undef case12
#undef case15
#undef case16
#undef op0
#undef op1
#undef op2
#endif

View File

@@ -0,0 +1,5 @@
void disassemble_opcode(char *output);
void disassemble_alt0(char *output);
void disassemble_alt1(char *output);
void disassemble_alt2(char *output);
void disassemble_alt3(char *output);

View File

@@ -0,0 +1,71 @@
#ifdef SUPERFX_CPP
uint8 SuperFX::op_read(uint16 addr) {
uint16 offset = addr - regs.cbr;
if(offset < 512) {
if(cache.valid[offset >> 4] == false) {
unsigned dp = offset & 0xfff0;
unsigned sp = (regs.pbr << 16) + ((regs.cbr + dp) & 0xfff0);
for(unsigned n = 0; n < 16; n++) {
add_clocks(memory_access_speed);
cache.buffer[dp++] = superfxbus.read(sp++);
}
cache.valid[offset >> 4] = true;
} else {
add_clocks(cache_access_speed);
}
return cache.buffer[offset];
}
if(regs.pbr <= 0x5f) {
//$[00-5f]:[0000-ffff] ROM
rombuffer_sync();
add_clocks(memory_access_speed);
return superfxbus.read((regs.pbr << 16) + addr);
} else {
//$[60-7f]:[0000-ffff] RAM
rambuffer_sync();
add_clocks(memory_access_speed);
return superfxbus.read((regs.pbr << 16) + addr);
}
}
uint8 SuperFX::peekpipe() {
uint8 result = regs.pipeline;
regs.pipeline = op_read(regs.r[15]);
r15_modified = false;
return result;
}
uint8 SuperFX::pipe() {
uint8 result = regs.pipeline;
regs.pipeline = op_read(++regs.r[15]);
r15_modified = false;
return result;
}
void SuperFX::cache_flush() {
for(unsigned n = 0; n < 32; n++) cache.valid[n] = false;
}
uint8 SuperFX::cache_mmio_read(uint16 addr) {
addr = (addr + regs.cbr) & 511;
return cache.buffer[addr];
}
void SuperFX::cache_mmio_write(uint16 addr, uint8 data) {
addr = (addr + regs.cbr) & 511;
cache.buffer[addr] = data;
if((addr & 15) == 15) cache.valid[addr >> 4] = true;
}
void SuperFX::memory_reset() {
for(unsigned n = 0; n < 512; n++) cache.buffer[n] = 0x00;
for(unsigned n = 0; n < 32; n++) cache.valid[n] = false;
for(unsigned n = 0; n < 2; n++) {
pixelcache[n].offset = ~0;
pixelcache[n].bitpend = 0x00;
}
}
#endif

View File

@@ -0,0 +1,9 @@
uint8 op_read(uint16 addr);
alwaysinline uint8 peekpipe();
alwaysinline uint8 pipe();
void cache_flush();
uint8 cache_mmio_read(uint16 addr);
void cache_mmio_write(uint16 addr, uint8 data);
void memory_reset();

View File

@@ -0,0 +1,118 @@
#ifdef SUPERFX_CPP
uint8 SuperFX::mmio_read(unsigned addr) {
cpu.synchronize_coprocessor();
addr &= 0xffff;
if(addr >= 0x3100 && addr <= 0x32ff) {
return cache_mmio_read(addr - 0x3100);
}
if(addr >= 0x3000 && addr <= 0x301f) {
return regs.r[(addr >> 1) & 15] >> ((addr & 1) << 3);
}
switch(addr) {
case 0x3030: {
return regs.sfr >> 0;
}
case 0x3031: {
uint8 r = regs.sfr >> 8;
regs.sfr.irq = 0;
cpu.regs.irq = 0;
return r;
}
case 0x3034: {
return regs.pbr;
}
case 0x3036: {
return regs.rombr;
}
case 0x303b: {
return regs.vcr;
}
case 0x303c: {
return regs.rambr;
}
case 0x303e: {
return regs.cbr >> 0;
}
case 0x303f: {
return regs.cbr >> 8;
}
}
return 0x00;
}
void SuperFX::mmio_write(unsigned addr, uint8 data) {
cpu.synchronize_coprocessor();
addr &= 0xffff;
if(addr >= 0x3100 && addr <= 0x32ff) {
return cache_mmio_write(addr - 0x3100, data);
}
if(addr >= 0x3000 && addr <= 0x301f) {
unsigned n = (addr >> 1) & 15;
if((addr & 1) == 0) {
regs.r[n] = (regs.r[n] & 0xff00) | data;
} else {
regs.r[n] = (data << 8) | (regs.r[n] & 0xff);
}
if(addr == 0x301f) regs.sfr.g = 1;
return;
}
switch(addr) {
case 0x3030: {
bool g = regs.sfr.g;
regs.sfr = (regs.sfr & 0xff00) | (data << 0);
if(g == 1 && regs.sfr.g == 0) {
regs.cbr = 0x0000;
cache_flush();
}
} break;
case 0x3031: {
regs.sfr = (data << 8) | (regs.sfr & 0x00ff);
} break;
case 0x3033: {
regs.bramr = data;
} break;
case 0x3034: {
regs.pbr = data & 0x7f;
cache_flush();
} break;
case 0x3037: {
regs.cfgr = data;
update_speed();
} break;
case 0x3038: {
regs.scbr = data;
} break;
case 0x3039: {
regs.clsr = data;
update_speed();
} break;
case 0x303a: {
regs.scmr = data;
} break;
}
}
#endif

View File

@@ -0,0 +1,2 @@
uint8 mmio_read(unsigned addr);
void mmio_write(unsigned addr, uint8 data);

View File

@@ -0,0 +1,96 @@
#ifdef SUPERFX_CPP
void SuperFX::serialize(serializer &s) {
Processor::serialize(s);
//superfx.hpp
s.integer(clockmode);
s.integer(instruction_counter);
//core/registers.hpp
s.integer(regs.pipeline);
s.integer(regs.ramaddr);
s.integer(regs.r[ 0].data);
s.integer(regs.r[ 1].data);
s.integer(regs.r[ 2].data);
s.integer(regs.r[ 3].data);
s.integer(regs.r[ 4].data);
s.integer(regs.r[ 5].data);
s.integer(regs.r[ 6].data);
s.integer(regs.r[ 7].data);
s.integer(regs.r[ 8].data);
s.integer(regs.r[ 9].data);
s.integer(regs.r[10].data);
s.integer(regs.r[11].data);
s.integer(regs.r[12].data);
s.integer(regs.r[13].data);
s.integer(regs.r[14].data);
s.integer(regs.r[15].data);
s.integer(regs.sfr.irq);
s.integer(regs.sfr.b);
s.integer(regs.sfr.ih);
s.integer(regs.sfr.il);
s.integer(regs.sfr.alt2);
s.integer(regs.sfr.alt1);
s.integer(regs.sfr.r);
s.integer(regs.sfr.g);
s.integer(regs.sfr.ov);
s.integer(regs.sfr.s);
s.integer(regs.sfr.cy);
s.integer(regs.sfr.z);
s.integer(regs.pbr);
s.integer(regs.rombr);
s.integer(regs.rambr);
s.integer(regs.cbr);
s.integer(regs.scbr);
s.integer(regs.scmr.ht);
s.integer(regs.scmr.ron);
s.integer(regs.scmr.ran);
s.integer(regs.scmr.md);
s.integer(regs.colr);
s.integer(regs.por.obj);
s.integer(regs.por.freezehigh);
s.integer(regs.por.highnibble);
s.integer(regs.por.dither);
s.integer(regs.por.transparent);
s.integer(regs.bramr);
s.integer(regs.vcr);
s.integer(regs.cfgr.irq);
s.integer(regs.cfgr.ms0);
s.integer(regs.clsr);
s.integer(regs.romcl);
s.integer(regs.romdr);
s.integer(regs.ramcl);
s.integer(regs.ramar);
s.integer(regs.ramdr);
s.integer(regs.sreg);
s.integer(regs.dreg);
s.array(cache.buffer);
s.array(cache.valid);
for(unsigned i = 0; i < 2; i++) {
s.integer(pixelcache[i].offset);
s.integer(pixelcache[i].bitpend);
s.array(pixelcache[i].data);
}
//timing/timing.hpp
s.integer(cache_access_speed);
s.integer(memory_access_speed);
s.integer(r15_modified);
}
#endif

View File

@@ -0,0 +1,81 @@
#include <snes.hpp>
#define SUPERFX_CPP
namespace SNES {
#include "serialization.cpp"
#include "bus/bus.cpp"
#include "core/core.cpp"
#include "memory/memory.cpp"
#include "mmio/mmio.cpp"
#include "timing/timing.cpp"
#include "disasm/disasm.cpp"
SuperFX superfx;
void SuperFX::Enter() { superfx.enter(); }
void SuperFX::enter() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(regs.sfr.g == 0) {
add_clocks(6);
synchronize_cpu();
continue;
}
(this->*opcode_table[(regs.sfr & 0x0300) + peekpipe()])();
if(r15_modified == false) regs.r[15]++;
if(++instruction_counter >= 128) {
instruction_counter = 0;
synchronize_cpu();
}
}
}
void SuperFX::init() {
initialize_opcode_table();
regs.r[14].on_modify = { &SuperFX::r14_modify, this };
regs.r[15].on_modify = { &SuperFX::r15_modify, this };
}
void SuperFX::enable() {
}
void SuperFX::power() {
clockmode = config.superfx.speed;
reset();
}
void SuperFX::reset() {
create(SuperFX::Enter, system.cpu_frequency());
superfxbus.init();
instruction_counter = 0;
for(unsigned n = 0; n < 16; n++) regs.r[n] = 0x0000;
regs.sfr = 0x0000;
regs.pbr = 0x00;
regs.rombr = 0x00;
regs.rambr = 0;
regs.cbr = 0x0000;
regs.scbr = 0x00;
regs.scmr = 0x00;
regs.colr = 0x00;
regs.por = 0x00;
regs.bramr = 0;
regs.vcr = 0x04;
regs.cfgr = 0x00;
regs.clsr = 0;
regs.pipeline = 0x01; //nop
regs.ramaddr = 0x0000;
regs.reset();
memory_reset();
timing_reset();
}
}

View File

@@ -0,0 +1,25 @@
#include "bus/bus.hpp"
class SuperFX : public Coprocessor, public MMIO {
public:
#include "core/core.hpp"
#include "memory/memory.hpp"
#include "mmio/mmio.hpp"
#include "timing/timing.hpp"
#include "disasm/disasm.hpp"
static void Enter();
void enter();
void init();
void enable();
void power();
void reset();
void serialize(serializer&);
private:
unsigned clockmode;
unsigned instruction_counter;
};
extern SuperFX superfx;
extern SuperFXBus superfxbus;

Some files were not shown because too many files have changed in this diff Show More