2017-08-29 17:00:16 -07:00
//////////////////////////////////////////////////////////////////////
// Masking shapes.
//////////////////////////////////////////////////////////////////////
/*
BSD 2 - Clause License
Copyright ( c ) 2017 , Revar Desmera
All rights reserved .
Redistribution and use in source and binary forms , with or without
modification , are permitted provided that the following conditions are met :
* Redistributions of source code must retain the above copyright notice , this
list of conditions and the following disclaimer .
* Redistributions in binary form must reproduce the above copyright notice ,
this list of conditions and the following disclaimer in the documentation
and / or other materials provided with the distribution .
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL
DAMAGES ( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES ; LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY ,
OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
* /
2019-02-27 03:50:16 -08:00
use < transforms.scad >
use < shapes.scad >
use < math.scad >
include < constants.scad >
2017-08-29 17:00:16 -07:00
module angle_half_pie_mask (
ang = 45 , h = 1 ,
r = undef , r1 = undef , r2 = undef ,
d = 1.0 , d1 = undef , d2 = undef ,
) {
r = ( r ! = undef ) ? r : ( d / 2 ) ;
r1 = ( r1 ! = undef ) ? r1 : ( ( d1 ! = undef ) ? ( d1 / 2 ) : r ) ;
r2 = ( r2 ! = undef ) ? r2 : ( ( d2 ! = undef ) ? ( d2 / 2 ) : r ) ;
rm = max ( r1 , r2 ) ;
difference ( ) {
cylinder ( h = h , r1 = r1 , r2 = r2 , center = true ) ;
translate ( [ 0 , - rm / 2 , 0 ] )
cube ( size = [ rm * 2 + 1 , rm , h + 1 ] , center = true ) ;
zrot ( ang ) {
translate ( [ 0 , rm / 2 , 0 ] ) {
cube ( size = [ rm * 2.1 , rm , h + 1 ] , center = true ) ;
}
}
}
}
// Creates a pie wedge shape that can be used to mask other shapes.
// You must specify either r or d, or their r1/r2, d1/d2 variants.
// ang = angle of wedge in degrees.
// h = height of wedge.
// r = Radius of circle wedge is created from. (optional)
// r1 = Bottom radius of cone that wedge is created from. (optional)
// r2 = Upper radius of cone that wedge is created from. (optional)
// d = Diameter of circle wedge is created from. (optional)
// d1 = Bottom diameter of cone that wedge is created from. (optional)
// d2 = Upper diameter of cone that wedge is created from. (optional)
// Example:
// angle_pie_mask(ang=30, d=100, h=20);
module angle_pie_mask (
ang = 45 , h = 1 ,
r = undef , r1 = undef , r2 = undef ,
d = 1.0 , d1 = undef , d2 = undef ,
) {
a1 = min ( ang , 180.0 ) ;
a2 = max ( 0.0 , ang - 180.0 ) ;
r = ( r ! = undef ) ? r : ( d / 2 ) ;
r1 = ( r1 ! = undef ) ? r1 : ( ( d1 ! = undef ) ? ( d1 / 2 ) : r ) ;
r2 = ( r2 ! = undef ) ? r2 : ( ( d2 ! = undef ) ? ( d2 / 2 ) : r ) ;
union ( ) {
angle_half_pie_mask ( h = h , r1 = r1 , r2 = r2 , ang = a1 ) ;
if ( a2 > 0.0 ) {
zrot ( 180 ) angle_half_pie_mask ( h = h , r1 = r1 , r2 = r2 , ang = a2 ) ;
}
}
}
2019-03-02 12:32:15 -08:00
// Creates a shape that can be used to chamfer a 90 degree edge.
// Difference it from the object to be chamfered. The center of
// the mask object should align exactly with the edge to be chamfered.
// l = Height of mask
// chamfer = Size of chamfer
// orient = Orientation of the cylinder. Use the ORIENT_ constants from constants.h. Default: vertical.
// align = Alignment of the cylinder. Use the V_ constants from constants.h. Default: centered.
// Example:
// difference() {
// cube(50);
// #chamfer_mask(l=50.1, chamfer=10.0, orient=ORIENT_X, align=V_RIGHT);
// }
module chamfer_mask ( l = 1.0 , chamfer = 1.0 , orient = ORIENT_Z , align = V_ZERO ) {
cyl ( d = chamfer * 2 , l = l , align = align , orient = orient , $fn = 4 ) ;
}
2017-08-29 17:00:16 -07:00
// Creates a shape that can be used to chamfer a 90 degree edge along the Z axis.
// Difference it from the object to be chamfered. The center of the mask
// object should align exactly with the edge to be chamfered.
// l = Height of mask
// chamfer = size of chamfer
2019-03-02 12:32:15 -08:00
// align = Alignment of the cylinder. Use the V_ constants from constants.h. Default: centered.
2017-08-29 17:00:16 -07:00
// Example:
2019-02-21 19:32:04 -08:00
// difference() {
// down(5) cube(10);
// chamfer_mask_z(l=10.1, chamfer=2.0);
// }
2019-03-02 12:32:15 -08:00
module chamfer_mask_z ( l = 1.0 , chamfer = 1.0 , align = V_ZERO ) {
chamfer_mask ( l = l , chamfer = chamfer , orient = ORIENT_Z , align = align ) ;
2017-08-29 17:00:16 -07:00
}
// Creates a shape that can be used to chamfer a 90 degree edge along the Y axis.
// Difference it from the object to be chamfered. The center of the mask
// object should align exactly with the edge to be chamfered.
// l = Height of mask
// chamfer = size of chamfer
2019-03-02 12:32:15 -08:00
// align = Alignment of the cylinder. Use the V_ constants from constants.h. Default: centered.
2017-08-29 17:00:16 -07:00
// Example:
2019-02-21 19:32:04 -08:00
// difference() {
// fwd(5) cube(10);
// chamfer_mask_y(l=10.1, chamfer=2.0);
// }
2019-03-02 12:32:15 -08:00
module chamfer_mask_y ( l = 1.0 , chamfer = 1.0 , align = V_ZERO ) {
chamfer_mask ( l = l , chamfer = chamfer , orient = ORIENT_Y , align = align ) ;
2018-10-06 22:23:01 -07:00
}
2017-08-29 17:00:16 -07:00
// Creates a shape that can be used to chamfer a 90 degree edge along the X axis.
// Difference it from the object to be chamfered. The center of the mask
// object should align exactly with the edge to be chamfered.
// l = Height of mask
// chamfer = size of chamfer
2019-03-02 12:32:15 -08:00
// align = Alignment of the cylinder. Use the V_ constants from constants.h. Default: centered.
2017-08-29 17:00:16 -07:00
// Example:
2019-02-21 19:32:04 -08:00
// difference() {
// left(5) cube(10);
// chamfer_mask_x(l=10.1, chamfer=2.0);
// }
2019-03-02 12:32:15 -08:00
module chamfer_mask_x ( l = 1.0 , chamfer = 1.0 , align = V_ZERO ) {
chamfer_mask ( l = l , chamfer = chamfer , orient = ORIENT_X , align = align ) ;
2018-10-06 22:23:01 -07:00
}
2017-08-29 17:00:16 -07:00
// Chamfers the edges of a cuboid region containing the given children.
2019-02-16 00:55:35 -08:00
// chamfer = Inset of the chamfer from the edge. (Default: 1)
2017-08-29 17:00:16 -07:00
// size = The size of the rectangular cuboid we want to chamfer.
2019-02-16 00:55:35 -08:00
// edges = Which edges do we want to chamfer. Recommend to use EDGE constants from constants.scad.
2017-08-29 17:00:16 -07:00
// [
// [Y+Z+, Y-Z+, Y-Z-, Y+Z-],
// [X+Z+, X-Z+, X-Z-, X+Z-],
// [X+Y+, X-Y+, X-Y-, X+Y-]
// ]
// Example:
2019-02-16 00:55:35 -08:00
// include <BOSL/constants.scad>
// chamfer(chamfer=2, size=[10,40,30], edges=EDGE_BOT_BK + EDGE_TOP_RT + EDGE_TOP_LF) {
2018-11-26 01:53:02 -08:00
// cube(size=[10,40,30], center=true);
2017-08-29 17:00:16 -07:00
// }
module chamfer ( chamfer = 1 , size = [ 1 , 1 , 1 ] , edges = [ [ 0 , 0 , 0 , 0 ] , [ 1 , 1 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] ] )
{
eps = 0.1 ;
x = size [ 0 ] ;
y = size [ 1 ] ;
z = size [ 2 ] ;
lx = x + eps ;
ly = y + eps ;
lz = z + eps ;
difference ( ) {
union ( ) {
children ( ) ;
}
union ( ) {
2019-02-16 00:55:35 -08:00
if ( edges [ 0 ] [ 0 ] > 0 )
2017-08-29 17:00:16 -07:00
up ( z / 2 ) back ( y / 2 ) chamfer_mask_x ( l = lx , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 0 ] [ 1 ] > 0 )
2017-08-29 17:00:16 -07:00
up ( z / 2 ) fwd ( y / 2 ) chamfer_mask_x ( l = lx , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 0 ] [ 2 ] > 0 )
2017-08-29 17:00:16 -07:00
down ( z / 2 ) back ( y / 2 ) chamfer_mask_x ( l = lx , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 0 ] [ 3 ] > 0 )
2017-08-29 17:00:16 -07:00
down ( z / 2 ) fwd ( y / 2 ) chamfer_mask_x ( l = lx , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 1 ] [ 0 ] > 0 )
2017-08-29 17:00:16 -07:00
up ( z / 2 ) right ( x / 2 ) chamfer_mask_y ( l = ly , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 1 ] [ 1 ] > 0 )
2017-08-29 17:00:16 -07:00
up ( z / 2 ) left ( x / 2 ) chamfer_mask_y ( l = ly , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 1 ] [ 2 ] > 0 )
2017-08-29 17:00:16 -07:00
down ( z / 2 ) right ( x / 2 ) chamfer_mask_y ( l = ly , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 1 ] [ 3 ] > 0 )
2017-08-29 17:00:16 -07:00
down ( z / 2 ) left ( x / 2 ) chamfer_mask_y ( l = ly , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 2 ] [ 0 ] > 0 )
2017-08-29 17:00:16 -07:00
back ( y / 2 ) right ( x / 2 ) chamfer_mask_z ( l = lz , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 2 ] [ 1 ] > 0 )
2017-08-29 17:00:16 -07:00
back ( y / 2 ) left ( x / 2 ) chamfer_mask_z ( l = lz , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 2 ] [ 2 ] > 0 )
2017-08-29 17:00:16 -07:00
fwd ( y / 2 ) right ( x / 2 ) chamfer_mask_z ( l = lz , chamfer = chamfer ) ;
2019-02-16 00:55:35 -08:00
if ( edges [ 2 ] [ 3 ] > 0 )
2017-08-29 17:00:16 -07:00
fwd ( y / 2 ) left ( x / 2 ) chamfer_mask_z ( l = lz , chamfer = chamfer ) ;
}
}
}
2019-03-02 12:32:15 -08:00
// Create a mask that can be used to bevel/chamfer the end of a cylindrical region.
// Difference it from the end of the region to be chamferred. The center of the mask
// object should align exactly with the center of the end of the cylindrical region
// to be chamferred.
2019-02-22 16:20:26 -08:00
// r = Radius of cylinder to chamfer.
// d = Diameter of cylinder to chamfer. Use instead of r.
// chamfer = Size of the edge chamferred, inset from edge. (Default: 0.25)
// ang = Angle of chamfer in degrees from vertical. (Default: 45)
// from_end = If true, chamfer size is measured from end of cylinder. If false, chamfer is measured outset from the radius of the cylinder. (Default: false)
2019-03-02 12:32:15 -08:00
// orient = Orientation of the mask. Use the `ORIENT_` constants from `constants.h`. Default: ORIENT_Z.
2018-12-22 02:37:39 -08:00
// Example:
// $fa=2; $fs=2;
// difference() {
// cylinder(r=50, h=100, center=true);
2019-03-02 12:32:15 -08:00
// up(50) !chamfer_cylinder_mask(r=50, chamfer=10);
2018-12-22 02:37:39 -08:00
// }
2019-03-02 12:32:15 -08:00
module chamfer_cylinder_mask ( r = 1.0 , d = undef , chamfer = 0.25 , ang = 45 , from_end = false , orient = ORIENT_Z )
2018-12-22 02:37:39 -08:00
{
2019-03-02 12:32:15 -08:00
r = get_radius ( r = r , d = d , dflt = 1 ) ;
rot ( orient ) cylinder_mask ( l = chamfer * 3 , r = r , chamfer2 = chamfer , chamfang2 = ang , from_end = from_end , ends_only = true , align = V_DOWN ) ;
}
// If passed children, bevels/chamfers and/or rounds/fillets the ends of the
// cylindrical/conical region specified. If passed no children, creates
// a mask to bevel/chamfer and/or fillet the ends of the cylindrical
// region specified. Difference the mask from the region. The center
// of the mask object should align exactly with the center of the
// cylindrical region to be chamferred.
// l = Length of the cylindrical/conical region.
// r = Radius of cylindrical region to chamfer.
// r1 = Radius of axis-negative end of the region to chamfer.
// r2 = Radius of axis-positive end of the region to chamfer.
// d = Diameter of cylindrical region to chamfer.
// d1 = Diameter of axis-negative end of the region to chamfer.
// d1 = Diameter of axis-positive end of the region to chamfer.
// chamfer = Size of the chamfers/bevels. (Default: 0.25)
// chamfer1 = Size of the chamfers/bevels for the axis-negative end of the region.
// chamfer2 = Size of the chamfers/bevels for the axis-positive end of the region.
// chamfang = Angle of chamfers/bevels in degrees from the length axis of the region. (Default: 45)
// chamfang1 = Angle of chamfer/bevel of the axis-negative end of the region, in degrees from the length axis.
// chamfang2 = Angle of chamfer/bevel of the axis-positive end of the region, in degrees from the length axis.
// fillet = The radius of the fillets on the ends of the region. Default: none.
// fillet1 = The radius of the fillet on the axis-negative end of the region.
// fillet2 = The radius of the fillet on the axis-positive end of the region.
// circum = If true, region will circumscribe the circle of the given radius/diameter.
// from_end = If true, chamfer/bevel size is measured from end of region. If false, chamfer/bevel is measured outset from the radius of the region. (Default: false)
// overage = The extra thickness of the mask. Default: `10`.
// ends_only = If true, only mask the ends and not around the middle of the cylinder.
// orient = Orientation. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Z`.
// align = Alignment of the region. Use the `V_` constants from `constants.scad`. Default: `V_ZERO`.
// Example:
// $fa=2; $fs=2;
// difference() {
// cylinder(h=100, r1=60, r2=30, center=true);
// cylinder_mask(l=100, r1=60, r2=30, chamfer=10, from_end=true);
// }
// cylinder_mask(l=100, r=50, chamfer1=10, fillet2=10) {
// cube([100,50,100], center=true);
// }
module cylinder_mask (
l ,
r = undef , r1 = undef , r2 = undef ,
d = undef , d1 = undef , d2 = undef ,
chamfer = undef , chamfer1 = undef , chamfer2 = undef ,
chamfang = undef , chamfang1 = undef , chamfang2 = undef ,
fillet = undef , fillet1 = undef , fillet2 = undef ,
circum = false , from_end = false ,
overage = 10 , ends_only = false ,
orient = ORIENT_Z , align = V_ZERO
) {
r1 = get_radius ( r = r , d = d , r1 = r1 , d1 = d1 , dflt = 1 ) ;
r2 = get_radius ( r = r , d = d , r1 = r2 , d1 = d2 , dflt = 1 ) ;
sides = segs ( max ( r1 , r2 ) ) ;
sc = circum ? 1 / cos ( 180 / sides ) : 1 ;
vang = atan2 ( l , r1 - r2 ) / 2 ;
ang1 = first_defined ( [ chamfang1 , chamfang , vang ] ) ;
ang2 = first_defined ( [ chamfang2 , chamfang , 90 - vang ] ) ;
cham1 = first_defined ( [ chamfer1 , chamfer , 0 ] ) ;
cham2 = first_defined ( [ chamfer2 , chamfer , 0 ] ) ;
fil1 = first_defined ( [ fillet1 , fillet , 0 ] ) ;
fil2 = first_defined ( [ fillet2 , fillet , 0 ] ) ;
maxd = max ( r1 , r2 ) ;
if ( $children > 0 ) {
difference ( ) {
children ( ) ;
cylinder_mask ( l = l , r1 = sc * r1 , r2 = sc * r2 , chamfer1 = cham1 , chamfer2 = cham2 , chamfang1 = ang1 , chamfang2 = ang2 , fillet1 = fil1 , fillet2 = fil2 , orient = orient , from_end = from_end ) ;
}
} else {
orient_and_align ( [ 2 * r1 , 2 * r1 , l ] , orient , align ) {
difference ( ) {
union ( ) {
chlen1 = cham1 / ( from_end ? 1 : tan ( ang1 ) ) ;
chlen2 = cham2 / ( from_end ? 1 : tan ( ang2 ) ) ;
if ( ! ends_only ) {
cylinder ( r = maxd + overage , h = l + 2 * overage , center = true ) ;
} else {
if ( cham2 > 0 ) up ( l / 2 - chlen2 ) cylinder ( r = maxd + overage , h = chlen2 + overage , center = false ) ;
if ( cham1 > 0 ) down ( l / 2 + overage ) cylinder ( r = maxd + overage , h = chlen1 + overage , center = false ) ;
if ( fil2 > 0 ) up ( l / 2 - fil2 ) cylinder ( r = maxd + overage , h = fil2 + overage , center = false ) ;
if ( fil1 > 0 ) down ( l / 2 + overage ) cylinder ( r = maxd + overage , h = fil1 + overage , center = false ) ;
}
}
cyl ( r1 = sc * r1 , r2 = sc * r2 , l = l , chamfer1 = cham1 , chamfer2 = cham2 , chamfang1 = ang1 , chamfang2 = ang2 , from_end = from_end , fillet1 = fil1 , fillet2 = fil2 ) ;
}
}
2018-12-22 02:37:39 -08:00
}
}
2019-02-22 16:20:26 -08:00
// Create a mask that can be used to bevel/chamfer the end of a cylindrical hole.
// Difference it from the hole to be chamferred. The center of the mask object
// should align exactly with the center of the end of the hole to be chamferred.
// r = Radius of hole to chamfer.
// d = Diameter of hole to chamfer. Use instead of r.
// chamfer = Size of the chamfer. (Default: 0.25)
// ang = Angle of chamfer in degrees from vertical. (Default: 45)
// from_end = If true, chamfer size is measured from end of hole. If false, chamfer is measured outset from the radius of the hole. (Default: false)
// Example:
// $fa=2; $fs=2;
// difference() {
// cube(100, center=true);
// cylinder(d=50, h=100.1, center=true);
// up(50) chamfer_hole_mask(d=50, chamfer=10);
// }
module chamfer_hole_mask ( r = 1.0 , d = undef , chamfer = 0.25 , ang = 45 , from_end = false )
{
h = chamfer * ( from_end ? 1 : tan ( 90 - ang ) ) ;
r = d = = undef ? r : d / 2 ;
r2 = r + chamfer * ( from_end ? tan ( ang ) : 1 ) ;
down ( h - 0.01 ) cylinder ( r1 = r , r2 = r2 , h = h , center = false ) ;
}
2017-08-29 17:00:16 -07:00
// Creates a shape that can be used to fillet a vertical 90 degree edge.
// Difference it from the object to be filletted. The center of the mask
// object should align exactly with the edge to be filletted.
// h = height of vertical mask.
// r = radius of the fillet.
// center = If true, vertically center mask.
// Example:
// difference() {
// cube(size=100, center=false);
2018-11-26 01:53:02 -08:00
// up(50) fillet_mask(h=100.1, r=25.0);
2017-08-29 17:00:16 -07:00
// }
module fillet_mask ( h = 1.0 , r = 1.0 , center = true )
{
n = ceil ( segs ( r ) / 4 ) * 4 ;
linear_extrude ( height = h , convexity = 4 , center = center ) {
polygon (
points = concat (
[ for ( a = [ 0 : 360 / n : 90 ] ) [ r * cos ( a ) - r , r * sin ( a ) - r ] ] ,
[ for ( a = [ 270 : 360 / n : 360 ] ) [ r * cos ( a ) - r , r * sin ( a ) + r ] ] ,
[ for ( a = [ 180 : 360 / n : 270 ] ) [ r * cos ( a ) + r , r * sin ( a ) + r ] ] ,
[ for ( a = [ 90 : 360 / n : 180 ] ) [ r * cos ( a ) + r , r * sin ( a ) - r ] ]
)
) ;
}
}
2017-08-29 18:57:37 -07:00
module fillet_mask_z ( l = 1.0 , r = 1.0 ) fillet_mask ( h = l , r = r , center = true ) ;
module fillet_mask_y ( l = 1.0 , r = 1.0 ) xrot ( 90 ) fillet_mask ( h = l , r = r , center = true ) ;
module fillet_mask_x ( l = 1.0 , r = 1.0 ) yrot ( 90 ) fillet_mask ( h = l , r = r , center = true ) ;
2017-08-29 17:00:16 -07:00
2019-02-19 20:53:27 -08:00
// Fillets the edges of a cuboid region containing the given children.
// fillet = Radius of the fillet. (Default: 1)
// size = The size of the rectangular cuboid we want to chamfer.
// edges = Which edges do we want to chamfer. Recommend to use EDGE constants from constants.scad.
// [
// [Y+Z+, Y-Z+, Y-Z-, Y+Z-],
// [X+Z+, X-Z+, X-Z-, X+Z-],
// [X+Y+, X-Y+, X-Y-, X+Y-]
// ]
// Example:
// include <BOSL/constants.scad>
// fillet(fillet=10, size=[50,100,150], edges=EDGES_TOP + EDGES_RIGHT - EDGE_BOT_RT, $fn=24) {
// cube(size=[50,100,150], center=true);
// }
module fillet ( fillet = 1 , size = [ 1 , 1 , 1 ] , edges = [ [ 0 , 0 , 0 , 0 ] , [ 1 , 1 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] ] )
{
eps = 0.1 ;
x = size [ 0 ] ;
y = size [ 1 ] ;
z = size [ 2 ] ;
lx = x + eps ;
ly = y + eps ;
lz = z + eps ;
rx = x - 2 * fillet ;
ry = y - 2 * fillet ;
rz = z - 2 * fillet ;
majrots = [ [ 0 , 90 , 0 ] , [ 90 , 0 , 0 ] , [ 0 , 0 , 0 ] ] ;
sides = quantup ( segs ( fillet ) , 4 ) ;
sc = 1 / cos ( 180 / sides ) ;
difference ( ) {
children ( ) ;
2019-02-27 03:50:16 -08:00
// Round edges.
2019-02-19 20:53:27 -08:00
for ( axis = [ 0 : 2 ] , i = [ 0 : 3 ] ) {
if ( edges [ axis ] [ i ] > 0 ) {
difference ( ) {
2019-02-27 03:50:16 -08:00
translate ( vmul ( EDGE_OFFSETS [ axis ] [ i ] , [ lx , ly , lz ] / 2 ) ) {
2019-02-19 20:53:27 -08:00
rotate ( majrots [ axis ] ) {
cube ( [ fillet * 2 , fillet * 2 , size [ axis ] + eps ] , center = true ) ;
}
}
2019-02-27 03:50:16 -08:00
translate ( vmul ( EDGE_OFFSETS [ axis ] [ i ] , [ rx , ry , rz ] / 2 ) ) {
2019-02-19 20:53:27 -08:00
rotate ( majrots [ axis ] ) {
2019-02-27 03:50:16 -08:00
zrot ( 180 / sides ) cylinder ( h = size [ axis ] + eps * 2 , r = fillet * sc , center = true , $fn = sides ) ;
2019-02-19 20:53:27 -08:00
}
}
}
}
}
2019-02-27 03:50:16 -08:00
// Round corners.
for ( za = [ - 1 , 1 ] , ya = [ - 1 , 1 ] , xa = [ - 1 , 1 ] ) {
if ( corner_edge_count ( edges , [ xa , ya , za ] ) > 2 ) {
2019-02-19 20:53:27 -08:00
difference ( ) {
2019-02-27 03:50:16 -08:00
translate ( vmul ( [ xa , ya , za ] / 2 , [ lx , ly , lz ] ) ) {
2019-02-19 20:53:27 -08:00
cube ( fillet * 2 , center = true ) ;
}
2019-02-27 03:50:16 -08:00
translate ( vmul ( [ xa , ya , za ] / 2 , [ rx , ry , rz ] ) ) {
2019-02-19 20:53:27 -08:00
zrot ( 180 / sides ) {
rotate_extrude ( convexity = 2 ) {
difference ( ) {
2019-02-27 03:50:16 -08:00
zrot ( 180 / sides ) circle ( r = fillet * sc * sc , $fn = sides ) ;
2019-02-19 20:53:27 -08:00
left ( fillet * 2 ) square ( fillet * 2 * 2 , center = true ) ;
}
}
}
}
}
}
}
}
}
2017-08-29 17:00:16 -07:00
// Creates a vertical mask that can be used to fillet the edge where two
// face meet, at any arbitrary angle. Difference it from the object to
// be filletted. The center of the mask should align exactly with the
// edge to be filletted.
// h = height of vertical mask.
// r = radius of the fillet.
// ang = angle that the planes meet at.
// center = If true, vertically center mask.
// Example:
2018-11-26 01:53:02 -08:00
// difference() {
// angle_pie_mask(ang=70, h=50, d=100);
// fillet_angled_edge_mask(h=51, r=20.0, ang=70, $fn=32);
// }
2017-08-29 18:57:37 -07:00
module fillet_angled_edge_mask ( h = 1.0 , r = 1.0 , ang = 90 , center = true )
2017-08-29 17:00:16 -07:00
{
sweep = 180 - ang ;
n = ceil ( segs ( r ) * sweep / 360 ) ;
x = r * sin ( 90 - ( ang / 2 ) ) / sin ( ang / 2 ) ;
linear_extrude ( height = h , convexity = 4 , center = center ) {
polygon (
points = concat (
[ for ( i = [ 0 : n ] ) let ( a = 90 + ang + i * sweep / n ) [ r * cos ( a ) + x , r * sin ( a ) + r ] ] ,
[ for ( i = [ 0 : n ] ) let ( a = 90 + i * sweep / n ) [ r * cos ( a ) + x , r * sin ( a ) - r ] ] ,
[
[ min ( - 1 , r * cos ( 270 - ang ) + x - 1 ) , r * sin ( 270 - ang ) - r ] ,
[ min ( - 1 , r * cos ( 90 + ang ) + x - 1 ) , r * sin ( 90 + ang ) + r ] ,
]
)
) ;
}
}
// Creates a shape that can be used to fillet the corner of an angle.
// Difference it from the object to be filletted. The center of the mask
// object should align exactly with the point of the corner to be filletted.
// fillet = radius of the fillet.
// ang = angle between planes that you need to fillet the corner of.
// Example:
2018-11-26 01:53:02 -08:00
// ang=60;
// difference() {
// angle_pie_mask(ang=ang, h=50, r=200);
// up(50/2) {
// fillet_angled_corner_mask(fillet=20, ang=ang);
// zrot_copies([0, ang]) right(200/2) fillet_mask_x(l=200, r=20);
// }
// fillet_angled_edge_mask(h=51, r=20, ang=ang);
// }
2017-08-29 18:57:37 -07:00
module fillet_angled_corner_mask ( fillet = 1.0 , ang = 90 )
2017-08-29 17:00:16 -07:00
{
2018-11-26 01:53:02 -08:00
dx = fillet / tan ( ang / 2 ) ;
fn = quantup ( segs ( fillet ) , 4 ) ;
2017-08-29 17:00:16 -07:00
difference ( ) {
2018-11-26 01:53:02 -08:00
down ( fillet ) cylinder ( r = dx / cos ( ang / 2 ) + 1 , h = fillet + 1 , center = false ) ;
yflip_copy ( ) {
translate ( [ dx , fillet , - fillet ] ) {
hull ( ) {
sphere ( r = fillet , $fn = fn ) ;
down ( fillet * 3 ) sphere ( r = fillet , $fn = fn ) ;
zrot_copies ( [ 0 , ang ] ) {
right ( fillet * 3 ) sphere ( r = fillet , $fn = fn ) ;
2017-08-29 17:00:16 -07:00
}
}
}
}
}
}
// Creates a shape that you can use to round 90 degree corners on a fillet.
// Difference it from the object to be filletted. The center of the mask
// object should align exactly with the corner to be filletted.
// r = radius of corner fillet.
// Example:
// $fa=1; $fs=1;
// difference() {
// cube(size=[6,10,16], center=true);
// translate([0, 5, 8]) yrot(90) fillet_mask(h=7, r=3);
// translate([3, 0, 8]) xrot(90) fillet_mask(h=11, r=3);
// translate([3, 5, 0]) fillet_mask(h=17, r=3);
2017-08-29 18:57:37 -07:00
// translate([3, 5, 8]) fillet_corner_mask(r=3);
2017-08-29 17:00:16 -07:00
// }
2017-08-29 18:57:37 -07:00
module fillet_corner_mask ( r = 1.0 )
2017-08-29 17:00:16 -07:00
{
difference ( ) {
cube ( size = r * 2 , center = true ) ;
grid_of ( count = [ 2 , 2 , 2 ] , spacing = r * 2 - 0.05 ) {
sphere ( r = r , center = true ) ;
}
}
}
2017-08-29 18:57:37 -07:00
//!fillet_corner_mask(r=10.0);
2017-08-29 17:00:16 -07:00
// Create a mask that can be used to round the end of a cylinder.
// Difference it from the cylinder to be filletted. The center of the
// mask object should align exactly with the center of the end of the
// cylinder to be filletted.
// r = radius of cylinder to fillet. (Default: 1.0)
// fillet = radius of the edge filleting. (Default: 0.25)
// xtilt = angle of tilt of end of cylinder in the X direction. (Default: 0)
// ytilt = angle of tilt of end of cylinder in the Y direction. (Default: 0)
// Example:
// $fa=2; $fs=2;
// difference() {
// cylinder(r=50, h=100, center=true);
2019-03-02 12:32:15 -08:00
// up(50) fillet_cylinder_mask(r=50, fillet=10, xtilt=30);
2017-08-29 17:00:16 -07:00
// }
module fillet_cylinder_mask ( r = 1.0 , fillet = 0.25 , xtilt = 0 , ytilt = 0 )
{
2019-03-02 12:32:15 -08:00
skew_xz ( za = xtilt ) {
skew_yz ( za = ytilt ) {
cylinder_mask ( l = fillet * 3 , r = r , fillet2 = fillet , ends_only = true , align = V_DOWN ) ;
2017-08-29 17:00:16 -07:00
}
}
}
// Create a mask that can be used to round the edge of a circular hole.
// Difference it from the hole to be filletted. The center of the
// mask object should align exactly with the center of the end of the
// hole to be filletted.
// r = radius of hole to fillet. (Default: 1.0)
// fillet = radius of the edge filleting. (Default: 0.25)
// xtilt = angle of tilt of end of cylinder in the X direction. (Default: 0)
// ytilt = angle of tilt of end of cylinder in the Y direction. (Default: 0)
// Example:
// $fa=2; $fs=2;
// difference() {
// cube([150,150,100], center=true);
// cylinder(r=50, h=100.1, center=true);
// up(50) fillet_hole_mask(r=50, fillet=10, xtilt=0, ytilt=0);
// }
module fillet_hole_mask ( r = 1.0 , fillet = 0.25 , xtilt = 0 , ytilt = 0 )
{
2018-12-22 02:37:39 -08:00
skew_xz ( za = xtilt ) {
skew_yz ( za = ytilt ) {
2017-08-29 17:00:16 -07:00
difference ( ) {
cylinder ( r = r + fillet , h = 2 * fillet , center = true ) ;
down ( fillet ) torus ( ir = r , or = r + 2 * fillet ) ;
}
}
}
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap