2019-04-19 17:02:17 -07:00
//////////////////////////////////////////////////////////////////////
// LibFile: geometry.scad
// Geometry helpers.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
2019-06-26 18:56:33 -07:00
// CommonCode:
2019-07-13 15:57:24 -07:00
// include <BOSL2/rounding.scad>
2019-06-26 18:56:33 -07:00
2019-04-19 17:02:17 -07:00
// Section: Lines and Triangles
2019-05-01 19:28:02 -07:00
// Function: point_on_segment2d()
2019-04-19 17:02:17 -07:00
// Usage:
2019-05-01 19:28:02 -07:00
// point_on_segment2d(point, edge);
2019-04-19 17:02:17 -07:00
// Description:
// Determine if the point is on the line segment between two points.
2019-06-25 17:57:03 -07:00
// Returns true if yes, and false if not.
2019-04-19 17:02:17 -07:00
// Arguments:
2019-04-30 23:45:05 -07:00
// point = The point to test.
2019-04-19 17:02:17 -07:00
// edge = Array of two points forming the line segment to test against.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_on_segment2d ( point , edge , eps = EPSILON ) =
approx ( point , edge [ 0 ] , eps = eps ) || approx ( point , edge [ 1 ] , eps = eps ) || // The point is an endpoint
2019-04-19 17:02:17 -07:00
sign ( edge [ 0 ] . x - point . x ) = = sign ( point . x - edge [ 1 ] . x ) // point is in between the
2019-06-25 17:57:03 -07:00
&& sign ( edge [ 0 ] . y - point . y ) = = sign ( point . y - edge [ 1 ] . y ) // edge endpoints
2019-06-17 18:55:10 -07:00
&& approx ( point_left_of_segment2d ( point , edge ) , 0 , eps = eps ) ; // and on the line defined by edge
2019-04-19 17:02:17 -07:00
2019-05-01 19:28:02 -07:00
// Function: point_left_of_segment2d()
2019-04-19 17:02:17 -07:00
// Usage:
2019-05-01 19:28:02 -07:00
// point_left_of_segment2d(point, edge);
2019-04-19 17:02:17 -07:00
// Description:
// Return >0 if point is left of the line defined by edge.
// Return =0 if point is on the line.
// Return <0 if point is right of the line.
// Arguments:
// point = The point to check position of.
// edge = Array of two points forming the line segment to test against.
2019-05-01 19:28:02 -07:00
function point_left_of_segment2d ( point , edge ) =
2019-04-19 17:02:17 -07:00
( edge [ 1 ] . x - edge [ 0 ] . x ) * ( point . y - edge [ 0 ] . y ) - ( point . x - edge [ 0 ] . x ) * ( edge [ 1 ] . y - edge [ 0 ] . y ) ;
2019-06-25 17:57:03 -07:00
2019-04-19 17:02:17 -07:00
// Internal non-exposed function.
2019-07-04 23:47:42 -07:00
function _point_above_below_segment ( point , edge ) =
edge [ 0 ] . y < = point . y ? (
( edge [ 1 ] . y > point . y && point_left_of_segment2d ( point , edge ) > 0 ) ? 1 : 0
2019-04-19 17:02:17 -07:00
) : (
2019-07-04 23:47:42 -07:00
( edge [ 1 ] . y < = point . y && point_left_of_segment2d ( point , edge ) < 0 ) ? - 1 : 0
2019-04-19 17:02:17 -07:00
) ;
// Function: collinear()
// Usage:
// collinear(a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// a = First point.
// b = Second point.
// c = Third point.
2019-04-30 23:45:05 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
2019-04-19 17:02:17 -07:00
function collinear ( a , b , c , eps = EPSILON ) =
2019-04-30 23:45:05 -07:00
distance_from_line ( [ a , b ] , c ) < eps ;
2019-04-19 17:02:17 -07:00
// Function: collinear_indexed()
// Usage:
// collinear_indexed(points, a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// points = A list of points.
// a = Index in `points` of first point.
// b = Index in `points` of second point.
// c = Index in `points` of third point.
// eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees.
function collinear_indexed ( points , a , b , c , eps = EPSILON ) =
let (
p1 = points [ a ] ,
p2 = points [ b ] ,
p3 = points [ c ]
2019-04-30 23:45:05 -07:00
) collinear ( p1 , p2 , p3 , eps ) ;
// Function: distance_from_line()
// Usage:
// distance_from_line(line, pt);
// Description:
// Finds the perpendicular distance of a point `pt` from the line `line`.
// Arguments:
// line = A list of two points, defining a line that both are on.
// pt = A point to find the distance of from the line.
// Example:
// distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8
function distance_from_line ( line , pt ) =
let ( a = line [ 0 ] , n = normalize ( line [ 1 ] - a ) , d = a - pt )
norm ( d - ( ( d * n ) * n ) ) ;
2019-04-19 17:02:17 -07:00
2019-05-28 18:44:41 -07:00
// Function: line_normal()
// Usage:
// line_normal([P1,P2])
// line_normal(p1,p2)
2019-08-16 02:06:04 -07:00
// Description:
// Returns the 2D normal vector to the given 2D line. This is otherwise known as the perpendicular vector counter-clockwise to the given ray.
2019-05-28 18:44:41 -07:00
// Arguments:
// p1 = First point on 2D line.
// p2 = Second point on 2D line.
2019-08-16 02:06:04 -07:00
// Example(2D):
// p1 = [10,10];
// p2 = [50,30];
// n = line_normal(p1,p2);
// stroke([p1,p2], endcap2="arrow2");
// color("green") stroke([p1,p1+10*n], endcap2="arrow2");
// color("blue") place_copies([p1,p2]) circle(d=2, $fn=12);
2019-05-28 18:44:41 -07:00
function line_normal ( p1 , p2 ) =
is_undef ( p2 ) ? line_normal ( p1 [ 0 ] , p1 [ 1 ] ) :
normalize ( [ p1 . y - p2 . y , p2 . x - p1 . x ] ) ;
// 2D Line intersection from two segments.
// This function returns [p,t,u] where p is the intersection point of
// the lines defined by the two segments, t is the bezier parameter
// for the intersection point on s1 and u is the bezier parameter for
// the intersection point on s2. The bezier parameter runs over [0,1]
// for each segment, so if it is in this range, then the intersection
// lies on the segment. Otherwise it lies somewhere on the extension
// of the segment.
2019-06-17 18:55:10 -07:00
function _general_line_intersection ( s1 , s2 , eps = EPSILON ) =
let (
denominator = det2 ( [ s1 [ 0 ] , s2 [ 0 ] ] - [ s1 [ 1 ] , s2 [ 1 ] ] )
) approx ( denominator , 0 , eps = eps ) ? [ undef , undef , undef ] : let (
t = det2 ( [ s1 [ 0 ] , s2 [ 0 ] ] - s2 ) / denominator ,
u = det2 ( [ s1 [ 0 ] , s1 [ 0 ] ] - [ s1 [ 1 ] , s2 [ 1 ] ] ) / denominator
) [ s1 [ 0 ] + t * ( s1 [ 1 ] - s1 [ 0 ] ) , t , u ] ;
2019-05-28 18:44:41 -07:00
// Function: line_intersection()
// Usage:
// line_intersection(l1, l2);
// Description:
// Returns the 2D intersection point of two unbounded 2D lines.
// Returns `undef` if the lines are parallel.
// Arguments:
// l1 = First 2D line, given as a list of two 2D points on the line.
// l2 = Second 2D line, given as a list of two 2D points on the line.
2019-06-17 18:55:10 -07:00
function line_intersection ( l1 , l2 , eps = EPSILON ) =
let ( isect = _general_line_intersection ( l1 , l2 , eps = eps ) ) isect [ 0 ] ;
2019-05-28 18:44:41 -07:00
// Function: segment_intersection()
// Usage:
// segment_intersection(s1, s2);
// Description:
// Returns the 2D intersection point of two 2D line segments.
// Returns `undef` if they do not intersect.
// Arguments:
// s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment.
// s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function segment_intersection ( s1 , s2 , eps = EPSILON ) =
2019-05-29 18:01:00 -07:00
let (
2019-06-17 18:55:10 -07:00
isect = _general_line_intersection ( s1 , s2 , eps = eps )
2019-05-29 18:01:00 -07:00
) isect [ 1 ] < 0 - eps || isect [ 1 ] > 1 + eps || isect [ 2 ] < 0 - eps || isect [ 2 ] > 1 + eps ? undef : isect [ 0 ] ;
2019-05-28 18:44:41 -07:00
// Function: line_segment_intersection()
// Usage:
// line_segment_intersection(line, segment);
// Description:
// Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment.
// Returns `undef` if they do not intersect.
// Arguments:
// line = The unbounded 2D line, defined by two 2D points on the line.
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function line_segment_intersection ( line , segment , eps = EPSILON ) =
2019-05-29 18:01:00 -07:00
let (
2019-06-17 18:55:10 -07:00
isect = _general_line_intersection ( line , segment , eps = eps )
2019-05-29 18:01:00 -07:00
) isect [ 2 ] < 0 - eps || isect [ 2 ] > 1 + eps ? undef : isect [ 0 ] ;
2019-05-28 18:44:41 -07:00
2019-08-16 21:22:41 -07:00
// Function: line_closest_point()
// Usage:
// line_closest_point(line,pt);
// Description:
// Returns the point on the given `line` that is closest to the given point `pt`.
// Arguments:
// line = A list of two points that are on the unbounded line.
// pt = The point to find the closest point on the line to.
function line_closest_point ( line , pt ) =
let (
n = line_normal ( line ) ,
isect = _general_line_intersection ( line , [ pt , pt + n ] )
) isect [ 0 ] ;
// Function: segment_closest_point()
// Usage:
// segment_closest_point(seg,pt);
// Description:
// Returns the point on the given line segment `seg` that is closest to the given point `pt`.
// Arguments:
// seg = A list of two points that are the endpoints of the bounded line segment.
// pt = The point to find the closest point on the segment to.
function segment_closest_point ( seg , pt ) =
let (
n = line_normal ( seg ) ,
isect = _general_line_intersection ( seg , [ pt , pt + n ] )
)
2019-08-19 21:11:19 -07:00
norm ( n ) = = 0 ? seg [ 0 ] :
2019-08-16 21:22:41 -07:00
isect [ 1 ] < = 0 ? seg [ 0 ] :
isect [ 1 ] >= 1 ? seg [ 1 ] :
isect [ 0 ] ;
2019-06-12 02:27:42 -07:00
// Function: find_circle_2tangents()
// Usage:
// find_circle_2tangents(pt1, pt2, pt3, r|d);
// Description:
// Returns [centerpoint, normal] of a circle of known size that is between and tangent to two rays with the same starting point.
// Both rays start at `pt2`, and one passes through `pt1`, while the other passes through `pt3`.
// If the rays given are 180º apart, `undef` is returned. If the rays are 3D, the normal returned is the plane normal of the circle.
// Arguments:
// pt1 = A point that the first ray passes though.
// pt2 = The starting point of both rays.
// pt3 = A point that the second ray passes though.
// r = The radius of the circle to find.
// d = The diameter of the circle to find.
2019-08-16 02:06:04 -07:00
// Example(2D):
// pts = [[60,40], [10,10], [65,5]];
// rad = 10;
// stroke([pts[1],pts[0]], endcap2="arrow2");
// stroke([pts[1],pts[2]], endcap2="arrow2");
// circ = find_circle_2tangents(pt1=pts[0], pt2=pts[1], pt3=pts[2], r=rad);
// translate(circ[0]) {
// color("green") {
// stroke(circle(r=rad),closed=true);
// stroke([[0,0],rad*[cos(315),sin(315)]]);
// }
// }
// place_copies(pts) color("blue") circle(d=2, $fn=12);
// translate(circ[0]) color("red") circle(d=2, $fn=12);
// labels = [[pts[0], "pt1"], [pts[1],"pt2"], [pts[2],"pt3"], [circ[0], "CP"], [circ[0]+[cos(315),sin(315)]*rad*0.7, "r"]];
// for(l=labels) translate(l[0]+[0,2]) color("black") text(text=l[1], size=2.5, halign="center");
2019-06-12 02:27:42 -07:00
function find_circle_2tangents ( pt1 , pt2 , pt3 , r = undef , d = undef ) =
let (
r = get_radius ( r = r , d = d , dflt = undef ) ,
v1 = normalize ( pt1 - pt2 ) ,
v2 = normalize ( pt3 - pt2 )
) approx ( norm ( v1 + v2 ) ) ? undef :
assert ( r ! = undef , "Must specify either r or d." )
let (
a = vector_angle ( v1 , v2 ) ,
n = vector_axis ( v1 , v2 ) ,
v = normalize ( mean ( [ v1 , v2 ] ) ) ,
s = r / sin ( a / 2 ) ,
cp = pt2 + s * v / norm ( v )
) [ cp , n ] ;
2019-07-15 16:41:01 -07:00
// Function: find_circle_3points()
// Usage:
// find_circle_3points(pt1, pt2, pt3);
// Description:
// Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear
// points. The centerpoint will be a 2D or 3D vector, depending on the points input. If all three
// points are 2D, then the resulting centerpoint will be 2D, and the normal will be UP ([0,0,1]).
// If any of the points are 3D, then the resulting centerpoint will be 3D. If the three points are
// collinear, then `[undef,undef,undef]` will be returned. The normal will be a normalized 3D
// vector with a non-negative Z axis.
// Arguments:
// pt1 = The first point.
// pt2 = The second point.
// pt3 = The third point.
2019-08-16 02:06:04 -07:00
// Example(2D):
// pts = [[60,40], [10,10], [65,5]];
// circ = find_circle_3points(pts[0], pts[1], pts[2]);
// translate(circ[0]) color("green") stroke(circle(r=circ[1]),closed=true,$fn=72);
// translate(circ[0]) color("red") circle(d=3, $fn=12);
// place_copies(pts) color("blue") circle(d=3, $fn=12);
2019-07-15 16:41:01 -07:00
function find_circle_3points ( pt1 , pt2 , pt3 ) =
collinear ( pt1 , pt2 , pt3 ) ? [ undef , undef , undef ] :
let (
v1 = pt1 - pt2 ,
v2 = pt3 - pt2 ,
n = vector_axis ( v1 , v2 ) ,
n2 = n . z < 0 ? - n : n
) len ( pt1 ) + len ( pt2 ) + len ( pt3 ) > 6 ? (
let (
a = project_plane ( pt1 , pt1 , pt2 , pt3 ) ,
b = project_plane ( pt2 , pt1 , pt2 , pt3 ) ,
c = project_plane ( pt3 , pt1 , pt2 , pt3 ) ,
res = find_circle_3points ( a , b , c )
) res [ 0 ] = = undef ? [ undef , undef , undef ] : let (
cp = lift_plane ( res [ 0 ] , pt1 , pt2 , pt3 ) ,
r = norm ( p2 - cp )
) [ cp , r , n2 ]
) : let (
mp1 = pt2 + v1 / 2 ,
mp2 = pt2 + v2 / 2 ,
mpv1 = rot ( 90 , v = n , p = v1 ) ,
mpv2 = rot ( 90 , v = n , p = v2 ) ,
l1 = [ mp1 , mp1 + mpv1 ] ,
l2 = [ mp2 , mp2 + mpv2 ] ,
isect = line_intersection ( l1 , l2 )
) is_undef ( isect ) ? [ undef , undef , undef ] : let (
2019-08-16 02:06:04 -07:00
r = norm ( pt2 - isect )
2019-07-15 16:41:01 -07:00
) [ isect , r , n2 ] ;
2019-07-17 01:49:51 -07:00
// Function: tri_calc()
// Usage:
// tri_calc(ang,ang2,adj,opp,hyp);
// Description:
// Given a side length and an angle, or two side lengths, calculates the rest of the side lengths
// and angles of a right triangle. Returns [ADJACENT, OPPOSITE, HYPOTENUSE, ANGLE, ANGLE2] where
// ADJACENT is the length of the side adjacent to ANGLE, and OPPOSITE is the length of the side
// opposite of ANGLE and adjacent to ANGLE2. ANGLE and ANGLE2 are measured in degrees.
// This is certainly more verbose and slower than writing your own calculations, but has the nice
// benefit that you can just specify the info you have, and don't have to figure out which trig
// formulas you need to use.
// Figure(2D):
// color("#ccc") {
// stroke(closed=false, width=0.5, [[45,0], [45,5], [50,5]]);
// stroke(closed=false, width=0.5, arc(N=6, r=15, cp=[0,0], start=0, angle=30));
// stroke(closed=false, width=0.5, arc(N=6, r=14, cp=[50,30], start=212, angle=58));
// }
// color("black") stroke(closed=true, [[0,0], [50,30], [50,0]]);
// color("#0c0") {
// translate([10.5,2.5]) text(size=3,text="ang",halign="center",valign="center");
// translate([44.5,22]) text(size=3,text="ang2",halign="center",valign="center");
// }
// color("blue") {
// translate([25,-3]) text(size=3,text="Adjacent",halign="center",valign="center");
// translate([53,15]) rotate(-90) text(size=3,text="Opposite",halign="center",valign="center");
// translate([25,18]) rotate(30) text(size=3,text="Hypotenuse",halign="center",valign="center");
// }
// Arguments:
// ang = The angle in degrees of the primary corner of the triangle.
// ang2 = The angle in degrees of the other non-right corner of the triangle.
// adj = The length of the side adjacent to the primary corner.
// opp = The length of the side opposite to the primary corner.
// hyp = The length of the hypotenuse.
// Example:
// tri = tri_calc(opp=15,hyp=30);
// echo(adjacent=tri[0], opposite=tri[1], hypotenuse=tri[2], angle=tri[3], angle2=tri[4]);
// Examples:
// adj = tri_calc(ang=30,opp=10)[0];
// opp = tri_calc(ang=20,hyp=30)[1];
// hyp = tri_calc(ang2=50,adj=20)[2];
// ang = tri_calc(adj=20,hyp=30)[3];
// ang2 = tri_calc(adj=20,hyp=40)[4];
function tri_calc ( ang , ang2 , adj , opp , hyp ) =
assert ( num_defined ( [ ang , ang2 ] ) < 2 , "You cannot specify both ang and ang2." )
assert ( num_defined ( [ ang , ang2 , adj , opp , hyp ] ) = = 2 , "You must specify exactly two arguments." )
let (
ang = ang ! = undef ? assert ( ang > 0 && ang < 90 ) ang :
ang2 ! = undef ? ( 90 - ang2 ) :
adj = = undef ? asin ( constrain ( opp / hyp , - 1 , 1 ) ) :
opp = = undef ? acos ( constrain ( adj / hyp , - 1 , 1 ) ) :
atan2 ( opp , adj ) ,
ang2 = ang2 ! = undef ? assert ( ang2 > 0 && ang2 < 90 ) ang2 : ( 90 - ang ) ,
adj = adj ! = undef ? assert ( adj > 0 ) adj :
( opp ! = undef ? ( opp / tan ( ang ) ) : ( hyp * cos ( ang ) ) ) ,
opp = opp ! = undef ? assert ( opp > 0 ) opp :
( adj ! = undef ? ( adj * tan ( ang ) ) : ( hyp * sin ( ang ) ) ) ,
hyp = hyp ! = undef ? assert ( hyp > 0 ) assert ( adj < hyp ) assert ( opp < hyp ) hyp :
( adj ! = undef ? ( adj / cos ( ang ) ) : ( opp / sin ( ang ) ) )
)
[ adj , opp , hyp , ang , ang2 ] ;
2019-07-10 13:37:23 -07:00
// Function: triangle_area()
2019-04-19 17:02:17 -07:00
// Usage:
2019-07-10 13:37:23 -07:00
// triangle_area(a,b,c);
2019-04-19 17:02:17 -07:00
// Description:
2019-07-10 13:37:23 -07:00
// Returns the area of a triangle formed between three 2D or 3D vertices.
// Result will be negative if the points are 2D and in in clockwise order.
2019-04-19 17:02:17 -07:00
// Examples:
2019-07-10 13:37:23 -07:00
// triangle_area([0,0], [5,10], [10,0]); // Returns -50
// triangle_area([10,0], [5,10], [0,0]); // Returns 50
function triangle_area ( a , b , c ) =
len ( a ) = = 3 ? 0.5 * norm ( cross ( c - a , c - b ) ) : (
2019-06-25 17:57:03 -07:00
a . x * ( b . y - c . y ) +
b . x * ( c . y - a . y ) +
2019-04-19 17:02:17 -07:00
c . x * ( a . y - b . y )
) / 2 ;
2019-06-16 23:57:05 -07:00
2019-04-19 17:02:17 -07:00
// Section: Planes
// Function: plane3pt()
// Usage:
// plane3pt(p1, p2, p3);
// Description:
2019-04-30 23:45:05 -07:00
// Generates the cartesian equation of a plane from three non-collinear points on the plane.
2019-04-19 17:02:17 -07:00
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// p1 = The first point on the plane.
// p2 = The second point on the plane.
// p3 = The third point on the plane.
function plane3pt ( p1 , p2 , p3 ) =
2019-04-30 23:45:05 -07:00
let (
p1 = point3d ( p1 ) ,
p2 = point3d ( p2 ) ,
p3 = point3d ( p3 ) ,
normal = normalize ( cross ( p3 - p1 , p2 - p1 ) )
) concat ( normal , [ normal * p1 ] ) ;
2019-04-19 17:02:17 -07:00
// Function: plane3pt_indexed()
// Usage:
// plane3pt_indexed(points, i1, i2, i3);
// Description:
// Given a list of points, and the indexes of three of those points,
// generates the cartesian equation of a plane that those points all
// lie on. Requires that the three indexed points be non-collinear.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// points = A list of points.
// i1 = The index into `points` of the first point on the plane.
// i2 = The index into `points` of the second point on the plane.
// i3 = The index into `points` of the third point on the plane.
function plane3pt_indexed ( points , i1 , i2 , i3 ) =
let (
p1 = points [ i1 ] ,
p2 = points [ i2 ] ,
2019-04-30 23:45:05 -07:00
p3 = points [ i3 ]
) plane3pt ( p1 , p2 , p3 ) ;
2019-04-19 17:02:17 -07:00
2019-08-20 20:47:29 -07:00
// Function: plane_from_pointslist()
// Usage:
// plane_from_pointslist(points);
// Description:
// Given a list of coplanar points, returns the cartesian equation of a plane.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of the plane.
function plane_from_pointslist ( points ) =
let (
points = deduplicate ( points ) ,
indices = find_noncollinear_points ( points ) ,
p1 = points [ indices [ 0 ] ] ,
p2 = points [ indices [ 1 ] ] ,
p3 = points [ indices [ 2 ] ]
) plane3pt ( p1 , p2 , p3 ) ;
2019-05-28 18:44:41 -07:00
// Function: plane_normal()
// Usage:
// plane_normal(plane);
// Description:
// Returns the normal vector for the given plane.
function plane_normal ( plane ) = [ for ( i = [ 0 : 2 ] ) plane [ i ] ] ;
2019-04-19 17:02:17 -07:00
// Function: distance_from_plane()
// Usage:
// distance_from_plane(plane, point)
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines how far from that plane the given point is.
// The returned distance will be positive if the point is in front of the
// plane; on the same side of the plane as the normal of that plane points
// towards. If the point is behind the plane, then the distance returned
// will be negative. The normal of the plane is the same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function distance_from_plane ( plane , point ) =
[ plane . x , plane . y , plane . z ] * point - plane [ 3 ] ;
// Function: coplanar()
// Usage:
// coplanar(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on that plane.
// Returns true if the point is on that plane.
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function coplanar ( plane , point ) =
abs ( distance_from_plane ( plane , point ) ) < = EPSILON ;
// Function: in_front_of_plane()
// Usage:
// in_front_of_plane(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on the side of that
// plane that the normal points towards. The normal of the plane is the
// same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function in_front_of_plane ( plane , point ) =
distance_from_plane ( plane , point ) > EPSILON ;
// Section: Paths and Polygons
2019-06-17 00:10:01 -07:00
// Function: is_path()
// Usage:
// is_path(x);
// Description:
2019-07-10 13:12:32 -07:00
// Returns true if the given item looks like a path. A path is defined as a list of two or more points.
function is_path ( x ) = is_list ( x ) && is_vector ( x . x ) && len ( x ) > 1 ;
2019-06-17 00:10:01 -07:00
// Function: is_closed_path()
// Usage:
// is_closed_path(path, [eps]);
// Description:
// Returns true if the first and last points in the given path are coincident.
2019-06-17 18:55:10 -07:00
function is_closed_path ( path , eps = EPSILON ) = approx ( path [ 0 ] , path [ len ( path ) - 1 ] , eps = eps ) ;
2019-06-17 00:10:01 -07:00
2019-07-18 21:48:32 -07:00
// Function: close_path()
2019-06-17 00:10:01 -07:00
// Usage:
// close_path(path);
// Description:
// If a path's last point does not coincide with its first point, closes the path so it does.
2019-06-17 18:55:10 -07:00
function close_path ( path , eps = EPSILON ) = is_closed_path ( path , eps = eps ) ? path : concat ( path , [ path [ 0 ] ] ) ;
2019-06-17 00:10:01 -07:00
2019-07-18 21:48:32 -07:00
// Function: cleanup_path()
// Usage:
// cleanup_path(path);
// Description:
// If a path's last point coincides with its first point, deletes the last point in the path.
function cleanup_path ( path , eps = EPSILON ) = is_closed_path ( path , eps = eps ) ? select ( path , 0 , - 2 ) : path ;
// Function: path_subselect()
2019-06-17 00:10:01 -07:00
// Usage:
// path_subselect(path,s1,u1,s2,u2):
// Description:
// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
// Arguments:
// s1 = The number of the starting segment.
// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
// s2 = The number of the ending segment.
// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
function path_subselect ( path , s1 , u1 , s2 , u2 ) =
let (
l = len ( path ) - 1 ,
u1 = s1 < 0 ? 0 : s1 > l ? 1 : u1 ,
u2 = s2 < 0 ? 0 : s2 > l ? 1 : u2 ,
s1 = constrain ( s1 , 0 , l ) ,
s2 = constrain ( s2 , 0 , l ) ,
pathout = concat (
( s1 < l ) ? [ lerp ( path [ s1 ] , path [ s1 + 1 ] , u1 ) ] : [ ] ,
[ for ( i = [ s1 + 1 : 1 : s2 ] ) path [ i ] ] ,
( s2 < l ) ? [ lerp ( path [ s2 ] , path [ s2 + 1 ] , u2 ) ] : [ ]
)
) pathout ;
2019-07-10 13:37:23 -07:00
// Function: polygon_area()
// Usage:
// area = polygon_area(vertices);
// Description:
// Given a polygon, returns the area of that polygon. If the polygon is self-crossing, the results are undefined.
function polygon_area ( vertices ) =
0.5 * sum ( [ for ( i = [ 0 : len ( vertices ) - 1 ] ) det2 ( select ( vertices , i , i + 1 ) ) ] ) ;
2019-08-21 23:52:03 -07:00
// Function: polygon_shift()
// Usage:
// polygon_shift(poly, i);
// Description:
// Given a polygon `poly`, rotates the point ordering so that the first point in the polygon path is the one at index `i`.
// Arguments:
// poly = The list of points in the polygon path.
// i = The index of the point to shift to the front of the path.
// Example:
// polygon_shift([[3,4], [8,2], [0,2], [-4,0]], 2); // Returns [[0,2], [-4,0], [3,4], [8,2]]
function polygon_shift ( poly , i ) =
assert ( i < len ( poly ) )
let (
poly = cleanup_path ( poly )
) select ( poly , i , i + len ( poly ) - 1 ) ;
2019-08-20 20:47:29 -07:00
// Function: polygon_shift_to_closest_point()
// Usage:
// polygon_shift_to_closest_point(path, pt);
// Description:
// Given a polygon `path`, rotates the point ordering so that the first point in the path is the one closest to the given point `pt`.
function polygon_shift_to_closest_point ( path , pt ) =
let (
path = cleanup_path ( path ) ,
closest = path_closest_point ( path , pt ) ,
seg = select ( path , closest [ 0 ] , closest [ 0 ] + 1 ) ,
u = norm ( closest [ 1 ] - seg [ 0 ] ) / norm ( seg [ 1 ] - seg [ 0 ] ) ,
segnum = closest [ 0 ] + ( u > 0.5 ? 1 : 0 )
) select ( path , segnum , segnum + len ( path ) - 1 ) ;
2019-08-19 21:11:19 -07:00
// Function: first_noncollinear()
// Usage:
// first_noncollinear(i1, i2, points);
// Description:
// Finds the first point in `points` that is not collinear with the points indexed by `i1` and `i2`. Returns the index of the found point.
// Arguments:
// i1 = The first point.
// i2 = The second point.
// points = The list of points to find a non-collinear point from.
function first_noncollinear ( i1 , i2 , points , _i ) =
( _i >= len ( points ) || ! collinear_indexed ( points , i1 , i2 , _i ) ) ? _i :
find_first_noncollinear ( i1 , i2 , points , _i = _i + 1 ) ;
// Function: noncollinear_points()
// Usage:
// find_noncollinear_points(points);
// Description:
// Finds the indexes of three good points in the points list `points` that are not collinear.
function find_noncollinear_points ( points ) =
let (
a = 0 ,
b = furthest_point ( a , points ) ,
c = first_noncollinear ( a , b , points )
) [ a , b , c ] ;
2019-07-15 20:14:29 -04:00
// Function: centroid()
// Usage:
// centroid(vertices)
// Description:
2019-08-19 21:11:19 -07:00
// Given a simple 2D polygon, returns the coordinates of the polygon's centroid.
2019-07-15 20:14:29 -04:00
// If the polygon is self-intersecting, the results are undefined.
function centroid ( vertices ) =
2019-07-17 01:49:51 -07:00
sum ( [
for ( i = [ 0 : len ( vertices ) - 1 ] )
let ( segment = select ( vertices , i , i + 1 ) )
det2 ( segment ) * sum ( segment )
] ) / 6 / polygon_area ( vertices ) ;
2019-07-15 20:14:29 -04:00
2019-06-17 00:10:01 -07:00
// Function: assemble_path_fragments()
// Usage:
// assemble_path_fragments(subpaths);
// Description:
// Given a list of incomplete paths, assembles them together into complete closed paths if it can.
2019-06-17 18:55:10 -07:00
function assemble_path_fragments ( subpaths , eps = EPSILON , _finished = [ ] ) =
2019-06-17 00:10:01 -07:00
len ( subpaths ) < = 1 ? concat ( _finished , subpaths ) :
let (
2019-06-26 18:56:33 -07:00
path = subpaths [ 0 ]
) is_closed_path ( path , eps = eps ) ? (
assemble_path_fragments (
[ for ( i = [ 1 : 1 : len ( subpaths ) - 1 ] ) subpaths [ i ] ] ,
eps = eps ,
_finished = concat ( _finished , [ path ] )
)
) : let (
2019-06-17 00:10:01 -07:00
matches = [
for ( i = [ 1 : 1 : len ( subpaths ) - 1 ] , rev1 = [ 0 , 1 ] , rev2 = [ 0 , 1 ] ) let (
idx1 = rev1 ? 0 : len ( path ) - 1 ,
idx2 = rev2 ? len ( subpaths [ i ] ) - 1 : 0
2019-06-17 18:55:10 -07:00
) if ( approx ( path [ idx1 ] , subpaths [ i ] [ idx2 ] , eps = eps ) ) [
2019-06-17 00:10:01 -07:00
i , concat (
rev1 ? reverse ( path ) : path ,
select ( rev2 ? reverse ( subpaths [ i ] ) : subpaths [ i ] , 1 , - 1 )
)
]
]
) len ( matches ) = = 0 ? (
assemble_path_fragments (
select ( subpaths , 1 , - 1 ) ,
2019-06-17 18:55:10 -07:00
eps = eps ,
_finished = concat ( _finished , [ path ] )
2019-06-17 00:10:01 -07:00
)
2019-06-17 18:55:10 -07:00
) : is_closed_path ( matches [ 0 ] [ 1 ] , eps = eps ) ? (
2019-06-17 00:10:01 -07:00
assemble_path_fragments (
[ for ( i = [ 1 : 1 : len ( subpaths ) - 1 ] ) if ( i ! = matches [ 0 ] [ 0 ] ) subpaths [ i ] ] ,
2019-06-17 18:55:10 -07:00
eps = eps ,
_finished = concat ( _finished , [ matches [ 0 ] [ 1 ] ] )
2019-06-17 00:10:01 -07:00
)
2019-07-04 23:47:42 -07:00
) : let (
subpath = matches [ 0 ] [ 1 ] ,
splen = len ( subpath ) ,
conn1 = [ for ( i = [ 1 : splen - 1 ] ) if ( approx ( subpath [ 0 ] , subpath [ i ] ) ) i ] ,
conn2 = [ for ( i = [ 0 : splen - 2 ] ) if ( approx ( subpath [ splen - 1 ] , subpath [ i ] ) ) i ]
) ( conn1 ! = [ ] || conn2 ! = [ ] ) ? let (
finpath = select ( subpath , 0 , conn1 ! = [ ] ? conn1 [ 0 ] : conn2 [ 0 ] ) ,
subpath2 = select ( subpath , conn1 ! = [ ] ? conn1 [ 0 ] : conn2 [ 0 ] , - 1 )
) (
assemble_path_fragments (
concat (
[ subpath2 ] ,
[ for ( i = [ 1 : 1 : len ( subpaths ) - 1 ] ) if ( i ! = matches [ 0 ] [ 0 ] ) subpaths [ i ] ]
) ,
eps = eps ,
_finished = concat ( _finished , [ finpath ] )
)
2019-06-17 00:10:01 -07:00
) : (
assemble_path_fragments (
concat (
[ matches [ 0 ] [ 1 ] ] ,
[ for ( i = [ 1 : 1 : len ( subpaths ) - 1 ] ) if ( i ! = matches [ 0 ] [ 0 ] ) subpaths [ i ] ]
) ,
2019-06-17 18:55:10 -07:00
eps = eps ,
_finished = _finished
2019-06-17 00:10:01 -07:00
)
) ;
2019-04-19 17:02:17 -07:00
// Function: simplify_path()
// Description:
// Takes a path and removes unnecessary collinear points.
// Usage:
// simplify_path(path, [eps])
// Arguments:
// path = A list of 2D path points.
2019-05-01 19:28:02 -07:00
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function simplify_path ( path , eps = EPSILON ) =
len ( path ) < = 2 ? path : let (
2019-05-26 22:34:46 -07:00
indices = concat ( [ 0 ] , [ for ( i = [ 1 : 1 : len ( path ) - 2 ] ) if ( ! collinear_indexed ( path , i - 1 , i , i + 1 , eps = eps ) ) i ] , [ len ( path ) - 1 ] )
2019-05-01 19:28:02 -07:00
) [ for ( i = indices ) path [ i ] ] ;
2019-04-19 17:02:17 -07:00
// Function: simplify_path_indexed()
// Description:
// Takes a list of points, and a path as a list of indexes into `points`,
// and removes all path points that are unecessarily collinear.
// Usage:
// simplify_path_indexed(path, eps)
// Arguments:
// points = A list of points.
// path = A list of indexes into `points` that forms a path.
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
2019-05-01 19:28:02 -07:00
function simplify_path_indexed ( points , path , eps = EPSILON ) =
len ( path ) < = 2 ? path : let (
2019-05-26 22:34:46 -07:00
indices = concat ( [ 0 ] , [ for ( i = [ 1 : 1 : len ( path ) - 2 ] ) if ( ! collinear_indexed ( points , path [ i - 1 ] , path [ i ] , path [ i + 1 ] , eps = eps ) ) i ] , [ len ( path ) - 1 ] )
2019-05-01 19:28:02 -07:00
) [ for ( i = indices ) path [ i ] ] ;
2019-04-19 17:02:17 -07:00
// Function: point_in_polygon()
// Usage:
// point_in_polygon(point, path)
// Description:
// This function tests whether the given point is inside, outside or on the boundary of
2019-05-28 18:44:41 -07:00
// the specified 2D polygon using the Winding Number method.
// The polygon is given as a list of 2D points, not including the repeated end point.
2019-04-19 17:02:17 -07:00
// Returns -1 if the point is outside the polyon.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies in the interior.
// The polygon does not need to be simple: it can have self-intersections.
// But the polygon cannot have holes (it must be simply connected).
// Rounding error may give mixed results for points on or near the boundary.
// Arguments:
// point = The point to check position of.
// path = The list of 2D path points forming the perimeter of the polygon.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_polygon ( point , path , eps = EPSILON ) =
2019-07-04 23:47:42 -07:00
// Original algorithm from http://geomalgorithms.com/a03-_inclusion.html
2019-06-25 17:57:03 -07:00
// Does the point lie on any edges? If so return 0.
2019-07-04 23:47:42 -07:00
sum ( [ for ( i = [ 0 : 1 : len ( path ) - 1 ] ) let ( seg = select ( path , i , i + 1 ) ) if ( ! approx ( seg [ 0 ] , seg [ 1 ] , eps = eps ) ) point_on_segment2d ( point , seg , eps = eps ) ? 1 : 0 ] ) > 0 ? 0 :
2019-04-19 17:02:17 -07:00
// Otherwise compute winding number and return 1 for interior, -1 for exterior
2019-07-04 23:47:42 -07:00
sum ( [ for ( i = [ 0 : 1 : len ( path ) - 1 ] ) let ( seg = select ( path , i , i + 1 ) ) if ( ! approx ( seg [ 0 ] , seg [ 1 ] , eps = eps ) ) _point_above_below_segment ( point , seg ) ] ) ! = 0 ? 1 : - 1 ;
2019-04-19 17:02:17 -07:00
// Function: pointlist_bounds()
// Usage:
// pointlist_bounds(pts);
// Description:
2019-05-28 18:44:41 -07:00
// Finds the bounds containing all the 2D or 3D points in `pts`.
2019-08-16 02:06:04 -07:00
// Returns `[[MINX, MINY, MINZ], [MAXX, MAXY, MAXZ]]`
2019-04-19 17:02:17 -07:00
// Arguments:
// pts = List of points.
function pointlist_bounds ( pts ) = [
[ for ( a = [ 0 : 2 ] ) min ( [ for ( x = pts ) point3d ( x ) [ a ] ] ) ] ,
[ for ( a = [ 0 : 2 ] ) max ( [ for ( x = pts ) point3d ( x ) [ a ] ] ) ]
] ;
2019-08-19 21:11:19 -07:00
// Function: closest_point()
// Usage:
// closest_point(pt, points);
// Description:
// Given a list of `points`, finds the point that is closest to the given point `pt`, and returns the index of it.
// Arguments:
// pt = The point to find the closest point to.
// points = The list of points to search.
function closest_point ( pt , points ) =
let (
i = min_index ( [ for ( j = idx ( points ) ) norm ( points [ j ] - pt ) ] )
) i ;
// Function: furthest_point()
// Usage:
// furthest_point(pt, points);
// Description:
// Given a list of `points`, finds the point that is farthest from the given point `pt`, and returns the index of it.
// Arguments:
// pt = The point to find the farthest point from.
// points = The list of points to search.
function furthest_point ( pt , points ) =
let (
i = max_index ( [ for ( j = idx ( points ) ) norm ( points [ j ] - pt ) ] )
) i ;
2019-08-20 20:47:29 -07:00
// Function: polygon_is_clockwise()
2019-05-28 18:44:41 -07:00
// Usage:
2019-08-20 20:47:29 -07:00
// polygon_is_clockwise(path);
2019-05-28 18:44:41 -07:00
// Description:
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
// Results for complex (self-intersecting) polygon are indeterminate.
// Arguments:
// path = The list of 2D path points for the perimeter of the polygon.
2019-08-20 20:47:29 -07:00
function polygon_is_clockwise ( path ) =
2019-07-22 22:40:49 -04:00
let (
2019-06-25 17:57:03 -07:00
minx = min ( subindex ( path , 0 ) ) ,
lowind = search ( minx , path , 0 , 0 ) ,
lowpts = select ( path , lowind ) ,
miny = min ( subindex ( lowpts , 1 ) ) ,
extreme_sub = search ( miny , lowpts , 1 , 1 ) [ 0 ] ,
extreme = select ( lowind , extreme_sub )
) det2 ( [ select ( path , extreme + 1 ) - path [ extreme ] , select ( path , extreme - 1 ) - path [ extreme ] ] ) < 0 ;
2019-05-28 18:44:41 -07:00
2019-08-20 20:47:29 -07:00
// Function: clockwise_polygon()
// Usage:
// clockwise_polygon(path);
// Description:
// Given a polygon path, returns the clockwise winding version of that path.
function clockwise_polygon ( path ) =
polygon_is_clockwise ( path ) ? path : reverse ( path ) ;
// Function: ccw_polygon()
// Usage:
// ccw_polygon(path);
// Description:
// Given a polygon path, returns the counter-clockwise winding version of that path.
function ccw_polygon ( path ) =
polygon_is_clockwise ( path ) ? reverse ( path ) : path ;
2019-06-16 23:57:05 -07:00
// Section: Regions and Boolean 2D Geometry
// Function: is_region()
// Usage:
// is_region(x);
// Description:
2019-07-10 13:12:32 -07:00
// Returns true if the given item looks like a region. A region is defined as a list of zero or more paths.
2019-06-16 23:57:05 -07:00
function is_region ( x ) = is_list ( x ) && is_path ( x . x ) ;
2019-07-18 21:48:32 -07:00
// Function: close_region()
2019-06-16 23:57:05 -07:00
// Usage:
// close_region(region);
// Description:
// Closes all paths within a given region.
2019-06-17 18:55:10 -07:00
function close_region ( region , eps = EPSILON ) = [ for ( path = region ) close_path ( path , eps = eps ) ] ;
2019-06-16 23:57:05 -07:00
2019-07-18 21:27:57 -04:00
// Function: check_and_fix_path()
2019-07-18 19:21:08 -04:00
// Usage:
2019-07-22 22:40:49 -04:00
// check_and_fix_path(path, [valid_dim], [closed])
2019-07-18 19:21:08 -04:00
// Description:
// Checks that the input is a path. If it is a region with one component, converts it to a path.
// valid_dim specfies the allowed dimension of the points in the path.
2019-07-18 21:27:57 -04:00
// If the path is closed, removed duplicate endpoint if present.
// Arguments:
// path = path to process
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
// closed = set to true if the path is closed, which enables a check for endpoint duplication
2019-07-22 22:40:49 -04:00
function check_and_fix_path ( path , valid_dim = undef , closed = false ) =
2019-07-18 19:21:08 -04:00
let ( path = is_region ( path ) ?
assert ( len ( path ) = = 1 , "Region supplied as path does not have exactly one component" )
path [ 0 ] :
assert ( is_path ( path ) , "Input is not a path" ) path ,
dim = array_dim ( path ) )
assert ( dim [ 0 ] > 1 , "Path must have at least 2 points" )
assert ( len ( dim ) = = 2 , "Invalid path: path is either a list of scalars or a list of matrices" )
assert ( is_def ( dim [ 1 ] ) , "Invalid path: entries in the path have variable length" )
let ( valid = is_undef ( valid_dim ) || in_list ( dim [ 1 ] , valid_dim ) )
assert ( valid , str ( "The points on the path have length " , dim [ 1 ] , " but length must be " ,
len ( valid_dim ) = = 1 ? valid_dim [ 0 ] : str ( "one of " , valid_dim ) ) )
closed && approx ( path [ 0 ] , select ( path , - 1 ) ) ? slice ( path , 0 , - 2 ) : path ;
2019-06-16 23:57:05 -07:00
2019-07-18 21:48:32 -07:00
// Function: cleanup_region()
// Usage:
// cleanup_region(region);
// Description:
// For all paths in the given region, if the last point coincides with the first point, removes the last point.
function cleanup_region ( region , eps = EPSILON ) = [ for ( path = region ) cleanup_path ( path , eps = eps ) ] ;
2019-08-20 20:47:29 -07:00
// Function: point_in_region()
// Usage:
// point_in_region(point, region);
// Description:
// Tests if a point is inside, outside, or on the border of a region.
// Returns -1 if the point is outside the region.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies inside the region.
// Arguments:
// point = The point to test.
// region = The region to test against. Given as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_region ( point , region , eps = EPSILON , _i = 0 , _cnt = 0 ) =
( _i >= len ( region ) ) ? ( ( _cnt % 2 = = 1 ) ? 1 : - 1 ) : let (
pip = point_in_polygon ( point , region [ _i ] , eps = eps )
) pip = = 0 ? 0 : point_in_region ( point , region , eps = eps , _i = _i + 1 , _cnt = _cnt + ( pip > 0 ? 1 : 0 ) ) ;
2019-06-16 23:57:05 -07:00
// Function: region_path_crossings()
// Usage:
// region_path_crossings(path, region);
// Description:
// Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path.
// Arguments:
// path = The path to find crossings on.
// region = Region to test for crossings of.
2019-06-17 18:55:10 -07:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function region_path_crossings ( path , region , eps = EPSILON ) = sort ( [
2019-06-17 21:44:50 -07:00
for (
s1 = enumerate ( pair ( close_path ( path ) ) ) ,
p = close_region ( region ) ,
s2 = pair ( p )
) let (
2019-06-17 18:55:10 -07:00
isect = _general_line_intersection ( s1 [ 1 ] , s2 , eps = eps )
2019-06-16 23:57:05 -07:00
) if (
! is_undef ( isect ) &&
2019-06-17 21:44:50 -07:00
isect [ 1 ] >= 0 - eps && isect [ 1 ] < 1 + eps &&
isect [ 2 ] >= 0 - eps && isect [ 2 ] < 1 + eps
)
[ s1 [ 0 ] , isect [ 1 ] ]
2019-06-16 23:57:05 -07:00
] ) ;
2019-06-25 17:57:03 -07:00
function _offset_chamfer ( center , points , delta ) =
let (
dist = sign ( delta ) * norm ( center - line_intersection ( select ( points , [ 0 , 2 ] ) , [ center , points [ 1 ] ] ) ) ,
endline = _shift_segment ( select ( points , [ 0 , 2 ] ) , delta - dist )
) [
line_intersection ( endline , select ( points , [ 0 , 1 ] ) ) ,
line_intersection ( endline , select ( points , [ 1 , 2 ] ) )
] ;
2019-06-26 18:56:33 -07:00
2019-06-25 17:57:03 -07:00
function _shift_segment ( segment , d ) =
move ( d * line_normal ( segment ) , segment ) ;
2019-06-26 18:56:33 -07:00
2019-06-25 17:57:03 -07:00
// Extend to segments to their intersection point. First check if the segments already have a point in common,
// which can happen if two colinear segments are input to the path variant of `offset()`
function _segment_extension ( s1 , s2 ) =
norm ( s1 [ 1 ] - s2 [ 0 ] ) < 1e-6 ? s1 [ 1 ] : line_intersection ( s1 , s2 ) ;
2019-06-26 18:56:33 -07:00
2019-06-25 17:57:03 -07:00
function _makefaces ( direction , startind , good , pointcount , closed ) =
let (
lenlist = list_bset ( good , pointcount ) ,
numfirst = len ( lenlist ) ,
numsecond = sum ( lenlist ) ,
prelim_faces = _makefaces_recurse ( startind , startind + len ( lenlist ) , numfirst , numsecond , lenlist , closed )
)
direction ? [ for ( entry = prelim_faces ) reverse ( entry ) ] : prelim_faces ;
function _makefaces_recurse ( startind1 , startind2 , numfirst , numsecond , lenlist , closed , firstind = 0 , secondind = 0 , faces = [ ] ) =
// We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past
// the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output.
( ( firstind = = numfirst - ( closed ? 0 : 1 ) ) && ( secondind = = numsecond - ( closed ? 0 : 1 ) ) ) ? faces :
_makefaces_recurse (
startind1 , startind2 , numfirst , numsecond , lenlist , closed , firstind + 1 , secondind + lenlist [ firstind ] ,
lenlist [ firstind ] = = 0 ? (
// point in original path has been deleted in offset path, so it has no match. We therefore
// make a triangular face using the current point from the offset (second) path
// (The current point in the second path can be equal to numsecond if firstind is the last point)
concat ( faces , [ [ secondind % numsecond + startind2 , firstind + startind1 , ( firstind + 1 ) % numfirst + startind1 ] ] )
// in this case a point or points exist in the offset path corresponding to the original path
) : (
concat ( faces ,
// First generate triangular faces for all of the extra points (if there are any---loop may be empty)
[ for ( i = [ 0 : 1 : lenlist [ firstind ] - 2 ] ) [ firstind + startind1 , secondind + i + 1 + startind2 , secondind + i + startind2 ] ] ,
// Finish (unconditionally) with a quadrilateral face
[
[
firstind + startind1 ,
( firstind + 1 ) % numfirst + startind1 ,
( secondind + lenlist [ firstind ] ) % numsecond + startind2 ,
( secondind + lenlist [ firstind ] - 1 ) % numsecond + startind2
]
]
)
)
) ;
2019-06-26 18:56:33 -07:00
2019-06-25 17:57:03 -07:00
// Determine which of the shifted segments are good
function _good_segments ( path , d , shiftsegs , closed , quality ) =
let (
maxind = len ( path ) - ( closed ? 1 : 2 ) ,
pathseg = [ for ( i = [ 0 : maxind ] ) select ( path , i + 1 ) - path [ i ] ] ,
pathseg_len = [ for ( seg = pathseg ) norm ( seg ) ] ,
pathseg_unit = [ for ( i = [ 0 : maxind ] ) pathseg [ i ] / pathseg_len [ i ] ] ,
// Order matters because as soon as a valid point is found, the test stops
// This order works better for circular paths because they succeed in the center
alpha = concat ( [ for ( i = [ 1 : 1 : quality ] ) i / ( quality + 1 ) ] , [ 0 , 1 ] )
) [
for ( i = [ 0 : len ( shiftsegs ) - 1 ] )
( i > maxind ) ? true :
_segment_good ( path , pathseg_unit , pathseg_len , d - 1e-4 , shiftsegs [ i ] , alpha )
] ;
// Determine if a segment is good (approximately)
// Input is the path, the path segments normalized to unit length, the length of each path segment
// the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1])
// The last parameter, index, gives the current alpha index.
//
// A segment is good if any part of it is farther than distance d from the path. The test is expensive, so
// we want to quit as soon as we find a point with distance > d, hence the recursive code structure.
//
// This test is approximate because it only samples the points listed in alpha. Listing more points
// will make the test more accurate, but slower.
function _segment_good ( path , pathseg_unit , pathseg_len , d , seg , alpha , index = 0 ) =
index = = len ( alpha ) ? false :
_point_dist ( path , pathseg_unit , pathseg_len , alpha [ index ] * seg [ 0 ] + ( 1 - alpha [ index ] ) * seg [ 1 ] ) > d ? true :
_segment_good ( path , pathseg_unit , pathseg_len , d , seg , alpha , index + 1 ) ;
// Input is the path, the path segments normalized to unit length, the length of each path segment
// and a test point. Computes the (minimum) distance from the path to the point, taking into
// account that the minimal distance may be anywhere along a path segment, not just at the ends.
function _point_dist ( path , pathseg_unit , pathseg_len , pt ) =
min ( [
for ( i = [ 0 : len ( pathseg_unit ) - 1 ] ) let (
v = pt - path [ i ] ,
projection = v * pathseg_unit [ i ] ,
segdist = projection < 0 ? norm ( pt - path [ i ] ) :
projection > pathseg_len [ i ] ? norm ( pt - select ( path , i + 1 ) ) :
norm ( v - projection * pathseg_unit [ i ] )
) segdist
] ) ;
2019-06-26 18:56:33 -07:00
function _offset_region (
paths , r , delta , chamfer , closed ,
maxstep , check_valid , quality ,
return_faces , firstface_index ,
flip_faces , _acc = [ ] , _i = 0
) =
_i >= len ( paths ) ? _acc :
_offset_region (
paths , _i = _i + 1 ,
_acc = ( paths [ _i ] . x % 2 = = 0 ) ? (
union ( _acc , [
offset (
paths [ _i ] . y ,
r = r , delta = delta , chamfer = chamfer , closed = closed ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index ,
flip_faces = flip_faces
)
] )
) : (
difference ( _acc , [
offset (
paths [ _i ] . y ,
r = - r , delta = - delta , chamfer = chamfer , closed = closed ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index ,
flip_faces = flip_faces
)
] )
) ,
r = r , delta = delta , chamfer = chamfer , closed = closed ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index , flip_faces = flip_faces
) ;
2019-06-25 17:57:03 -07:00
// Function: offset()
//
// Description:
2019-07-16 15:18:00 -07:00
// Takes an input path and returns a path offset by the specified amount. As with the built-in
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
// corners. Positive offsets shift the path to the left (relative to the direction of the path).
2019-07-16 17:17:32 -04:00
//
2019-07-16 15:18:00 -07:00
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
// for this situation. To test validity the code checks that segments have distance larger than (r
// or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate
// segments you wanted included in various situations, so you can disable it if you wish by setting
// check_valid=false. Another situation is that the test is not sufficiently thorough and some
// segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This
// increases the number of samples on the segment that are checked.) Run time will increase. In
// some situations you may be able to decrease run time by setting quality to 0, which causes only
// segment ends to be checked.
2019-07-16 17:17:32 -04:00
//
2019-07-16 15:18:00 -07:00
// For construction of polyhedra `offset()` can also return face lists. These list faces between
// the original path and the offset path where the vertices are ordered with the original path
// first, starting at `firstface_index` and the offset path vertices appearing afterwords. The
// direction of the faces can be flipped using `flip_faces`. When you request faces the return
// value is a list: [offset_path, face_list].
2019-06-25 17:57:03 -07:00
// Arguments:
// path = the path to process. A list of 2d points.
// r = offset radius. Distance to offset. Will round over corners.
// delta = offset distance. Distance to offset with pointed corners.
// chamfer = chamfer corners when you specify `delta`. Default: false
// closed = path is a closed curve. Default: False.
// check_valid = perform segment validity check. Default: True.
// quality = validity check quality parameter, a small integer. Default: 1.
// return_faces = return face list. Default: False.
// firstface_index = starting index for face list. Default: 0.
// flip_faces = flip face direction. Default: false
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 13:11:13 -07:00
// #stroke(closed=true, star);
2019-07-18 19:21:08 -04:00
// stroke(closed=true, offset(star, delta=10, closed=true));
2019-06-25 17:57:03 -07:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 13:11:13 -07:00
// #stroke(closed=true, star);
2019-07-18 19:21:08 -04:00
// stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true));
2019-06-25 17:57:03 -07:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 13:11:13 -07:00
// #stroke(closed=true, star);
2019-07-18 19:21:08 -04:00
// stroke(closed=true, offset(star, r=10, closed=true));
2019-06-25 17:57:03 -07:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 13:11:13 -07:00
// #stroke(closed=true, star);
2019-07-18 19:21:08 -04:00
// stroke(closed=true, offset(star, delta=-10, closed=true));
2019-06-25 17:57:03 -07:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 13:11:13 -07:00
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true));
2019-06-25 17:57:03 -07:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 13:11:13 -07:00
// #stroke(closed=true, star);
2019-07-18 19:21:08 -04:00
// stroke(closed=true, offset(star, r=-10, closed=true));
2019-07-16 16:51:53 -04:00
// Example(2D): This case needs `quality=2` for success
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
2019-07-18 19:21:08 -04:00
// polygon(offset(test,r=-1.9, closed=true, quality=2));
// //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error
2019-07-16 16:51:53 -04:00
// %down(.1)polygon(test);
// Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
// star = star(5, r=22, ir=13);
2019-07-18 19:21:08 -04:00
// stroke(star,width=.2,closed=true);
2019-07-16 16:51:53 -04:00
// color("green")
2019-07-18 19:21:08 -04:00
// stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default)
2019-07-16 16:51:53 -04:00
// color("red")
2019-07-18 19:21:08 -04:00
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
// width=.2,closed=true);
2019-07-16 16:51:53 -04:00
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
// star = star(5, r=22, ir=13);
// color("green")
2019-07-18 19:21:08 -04:00
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
2019-07-16 16:51:53 -04:00
// color("red")
2019-07-18 19:21:08 -04:00
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
2019-07-16 16:51:53 -04:00
// Example(2D): The extra triangles in this example show that the validity check cannot be skipped
2019-07-18 19:21:08 -04:00
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
2019-07-16 16:51:53 -04:00
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true);
// Example(2D): The triangles are removed by the validity check
2019-07-18 19:21:08 -04:00
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
2019-07-16 16:51:53 -04:00
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true);
2019-07-18 19:21:08 -04:00
// Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path.
2019-06-25 17:57:03 -07:00
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
// #stroke(sinpath);
// stroke(offset(sinpath, r=17.5));
2019-06-26 18:56:33 -07:00
// Example(2D): Region
// rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true)));
2019-07-12 13:11:13 -07:00
// #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p);
2019-06-26 18:56:33 -07:00
// region(offset(rgn, r=-5));
2019-06-25 17:57:03 -07:00
function offset (
path , r = undef , delta = undef , chamfer = false ,
maxstep = 0.1 , closed = false , check_valid = true ,
quality = 1 , return_faces = false , firstface_index = 0 ,
flip_faces = false
) =
2019-06-26 18:56:33 -07:00
is_region ( path ) ? (
2019-08-08 21:10:41 -07:00
assert ( ! return_faces , "return_faces not supported for regions." )
2019-06-26 18:56:33 -07:00
let (
2019-08-20 20:47:29 -07:00
path = [ for ( p = path ) polygon_is_clockwise ( p ) ? p : reverse ( p ) ] ,
2019-06-26 18:56:33 -07:00
rgn = exclusive_or ( [ for ( p = path ) [ p ] ] ) ,
pathlist = sort ( idx = 0 , [
for ( i = [ 0 : 1 : len ( rgn ) - 1 ] ) [
2019-07-17 16:33:08 -07:00
sum ( concat ( [ 0 ] , [
2019-06-26 18:56:33 -07:00
for ( j = [ 0 : 1 : len ( rgn ) - 1 ] ) if ( i ! = j )
point_in_polygon ( rgn [ i ] [ 0 ] , rgn [ j ] ) >= 0 ? 1 : 0
2019-07-17 16:33:08 -07:00
] ) ) ,
2019-06-26 18:56:33 -07:00
rgn [ i ]
]
] )
) _offset_region (
pathlist , r = r , delta = delta , chamfer = chamfer , closed = true ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index ,
flip_faces = flip_faces
)
) : let ( rcount = num_defined ( [ r , delta ] ) )
2019-06-25 17:57:03 -07:00
assert ( rcount = = 1 , "Must define exactly one of 'delta' and 'r'" )
let (
chamfer = is_def ( r ) ? false : chamfer ,
quality = max ( 0 , round ( quality ) ) ,
2019-08-20 20:47:29 -07:00
flip_dir = closed && ! polygon_is_clockwise ( path ) ? - 1 : 1 ,
2019-07-18 19:21:08 -04:00
d = flip_dir * ( is_def ( r ) ? r : delta ) ,
2019-06-25 17:57:03 -07:00
shiftsegs = [ for ( i = [ 0 : len ( path ) - 1 ] ) _shift_segment ( select ( path , i , i + 1 ) , d ) ] ,
// good segments are ones where no point on the segment is less than distance d from any point on the path
good = check_valid ? _good_segments ( path , abs ( d ) , shiftsegs , closed , quality ) : replist ( true , len ( shiftsegs ) ) ,
goodsegs = bselect ( shiftsegs , good ) ,
goodpath = bselect ( path , good )
)
assert ( len ( goodsegs ) > 0 , "Offset of path is degenerate" )
let (
// Extend the shifted segments to their intersection points
sharpcorners = [ for ( i = [ 0 : len ( goodsegs ) - 1 ] ) _segment_extension ( select ( goodsegs , i - 1 ) , select ( goodsegs , i ) ) ] ,
// If some segments are parallel then the extended segments are undefined. This case is not handled
// Note if !closed the last corner doesn't matter, so exclude it
parallelcheck =
( len ( sharpcorners ) = = 2 && ! closed ) ||
all_defined ( select ( sharpcorners , closed ? 0 : 1 , - 1 ) )
)
assert ( parallelcheck , "Path turns back on itself (180 deg turn)" )
let (
// This is a boolean array that indicates whether a corner is an outside or inside corner
// For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward
// If either side turns back it is an inside corner---must check both.
// Outside corners can get rounded (if r is specified and there is space to round them)
outsidecorner = [
for ( i = [ 0 : len ( goodsegs ) - 1 ] ) let (
prevseg = select ( goodsegs , i - 1 )
) (
( goodsegs [ i ] [ 1 ] - goodsegs [ i ] [ 0 ] ) *
( goodsegs [ i ] [ 0 ] - sharpcorners [ i ] ) > 0
) && (
( prevseg [ 1 ] - prevseg [ 0 ] ) *
( sharpcorners [ i ] - prevseg [ 1 ] ) > 0
)
] ,
steps = is_def ( delta ) ? [ ] : [
for ( i = [ 0 : len ( goodsegs ) - 1 ] )
ceil (
abs ( r ) * vector_angle (
select ( goodsegs , i - 1 ) [ 1 ] - goodpath [ i ] ,
goodsegs [ i ] [ 0 ] - goodpath [ i ]
) * PI / 180 / maxstep
)
] ,
// If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed
// Otherwise it's the same as sharpcorners
// If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later
// gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get
// plain sharpcorners back.
newcorners = is_def ( delta ) && ! chamfer ? [ sharpcorners ] : [
for ( i = [ 0 : len ( goodsegs ) - 1 ] ) (
( ! chamfer && steps [ i ] < = 2 ) //Chamfer all points but only round if steps is 3 or more
|| ! outsidecorner [ i ] // Don't round inside corners
|| ( ! closed && ( i = = 0 || i = = len ( goodsegs ) - 1 ) ) // Don't round ends of an open path
) ? [ sharpcorners [ i ] ] : (
chamfer ?
_offset_chamfer (
goodpath [ i ] , [
select ( goodsegs , i - 1 ) [ 1 ] ,
sharpcorners [ i ] ,
goodsegs [ i ] [ 0 ]
] , d
) :
arc (
cp = goodpath [ i ] ,
points = [
select ( goodsegs , i - 1 ) [ 1 ] ,
goodsegs [ i ] [ 0 ]
] ,
N = steps [ i ]
)
)
] ,
pointcount = ( is_def ( delta ) && ! chamfer ) ?
replist ( 1 , len ( sharpcorners ) ) :
[ for ( i = [ 0 : len ( goodsegs ) - 1 ] ) len ( newcorners [ i ] ) ] ,
start = [ goodsegs [ 0 ] [ 0 ] ] ,
end = [ goodsegs [ len ( goodsegs ) - 2 ] [ 1 ] ] ,
edges = closed ?
flatten ( newcorners ) :
concat ( start , slice ( flatten ( newcorners ) , 1 , - 2 ) , end ) ,
faces = ! return_faces ? [ ] :
_makefaces (
flip_faces , firstface_index , good ,
pointcount , closed
)
) return_faces ? [ edges , faces ] : edges ;
2019-06-17 18:55:10 -07:00
function _split_path_at_region_crossings ( path , region , eps = EPSILON ) =
2019-06-16 23:57:05 -07:00
let (
path = deduplicate ( path , eps = eps ) ,
region = [ for ( path = region ) deduplicate ( path , eps = eps ) ] ,
2019-06-17 21:44:50 -07:00
xings = region_path_crossings ( path , region , eps = eps ) ,
2019-06-17 18:55:10 -07:00
crossings = deduplicate (
concat (
[ [ 0 , 0 ] ] ,
2019-06-17 21:44:50 -07:00
xings ,
2019-06-17 18:55:10 -07:00
[ [ len ( path ) - 2 , 1 ] ]
) ,
eps = eps
2019-06-17 21:44:50 -07:00
) ,
subpaths = [
for ( p = pair ( crossings ) )
deduplicate ( eps = eps ,
path_subselect ( path , p [ 0 ] [ 0 ] , p [ 0 ] [ 1 ] , p [ 1 ] [ 0 ] , p [ 1 ] [ 1 ] )
)
]
)
subpaths ;
2019-06-16 23:57:05 -07:00
2019-06-17 18:55:10 -07:00
function _tag_subpaths ( path , region , eps = EPSILON ) =
2019-06-16 23:57:05 -07:00
let (
2019-06-17 18:55:10 -07:00
subpaths = _split_path_at_region_crossings ( path , region , eps = eps ) ,
2019-06-16 23:57:05 -07:00
tagged = [
2019-06-17 18:55:10 -07:00
for ( sub = subpaths ) let (
subpath = deduplicate ( sub )
) if ( len ( sub ) > 1 ) let (
2019-06-16 23:57:05 -07:00
midpt = lerp ( subpath [ 0 ] , subpath [ 1 ] , 0.5 ) ,
2019-06-17 18:55:10 -07:00
rel = point_in_region ( midpt , region , eps = eps )
2019-06-16 23:57:05 -07:00
) rel < 0 ? [ "O" , subpath ] : rel > 0 ? [ "I" , subpath ] : let (
2019-06-17 18:55:10 -07:00
vec = normalize ( subpath [ 1 ] - subpath [ 0 ] ) ,
perp = rot ( 90 , planar = true , p = vec ) ,
sidept = midpt + perp * 0.01 ,
rel1 = point_in_polygon ( sidept , path , eps = eps ) > 0 ,
rel2 = point_in_region ( sidept , region , eps = eps ) > 0
) rel1 = = rel2 ? [ "S" , subpath ] : [ "U" , subpath ]
2019-06-16 23:57:05 -07:00
]
) tagged ;
2019-06-17 18:55:10 -07:00
function _tag_region_subpaths ( region1 , region2 , eps = EPSILON ) =
[ for ( path = region1 ) each _tag_subpaths ( path , region2 , eps = eps ) ] ;
2019-06-16 23:57:05 -07:00
2019-06-17 18:55:10 -07:00
function _tagged_region ( region1 , region2 , keep1 , keep2 , eps = EPSILON ) =
2019-06-16 23:57:05 -07:00
let (
2019-06-17 18:55:10 -07:00
region1 = close_region ( region1 , eps = eps ) ,
region2 = close_region ( region2 , eps = eps ) ,
tagged1 = _tag_region_subpaths ( region1 , region2 , eps = eps ) ,
tagged2 = _tag_region_subpaths ( region2 , region1 , eps = eps ) ,
2019-06-16 23:57:05 -07:00
tagged = concat (
[ for ( tagpath = tagged1 ) if ( in_list ( tagpath [ 0 ] , keep1 ) ) tagpath [ 1 ] ] ,
[ for ( tagpath = tagged2 ) if ( in_list ( tagpath [ 0 ] , keep2 ) ) tagpath [ 1 ] ]
) ,
2019-06-17 18:55:10 -07:00
outregion = assemble_path_fragments ( tagged , eps = eps )
2019-06-16 23:57:05 -07:00
) outregion ;
2019-06-18 00:46:05 -07:00
// Function&Module: union()
2019-06-16 23:57:05 -07:00
// Usage:
2019-06-18 00:46:05 -07:00
// union() {...}
// region = union(regions);
// region = union(REGION1,REGION2);
// region = union(REGION1,REGION2,REGION3);
2019-06-16 23:57:05 -07:00
// Description:
2019-06-18 00:46:05 -07:00
// When called as a function and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean union of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean union of the given children.
2019-06-16 23:57:05 -07:00
// Arguments:
// regions = List of regions to union. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
2019-07-12 13:11:13 -07:00
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
2019-06-16 23:57:05 -07:00
// color("green") region(union(shape1,shape2));
2019-06-17 18:55:10 -07:00
function union ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? union ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
2019-06-16 23:57:05 -07:00
len ( regions ) < = 1 ? regions [ 0 ] :
union (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
2019-06-17 18:55:10 -07:00
[ _tagged_region ( regions [ 0 ] , regions [ 1 ] , [ "O" , "S" ] , [ "O" ] , eps = eps ) ] ,
2019-06-16 23:57:05 -07:00
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
2019-06-17 18:55:10 -07:00
) ,
eps = eps
2019-06-16 23:57:05 -07:00
) ;
2019-06-18 00:46:05 -07:00
// Function&Module: difference()
2019-06-16 23:57:05 -07:00
// Usage:
2019-06-18 00:46:05 -07:00
// difference() {...}
// region = difference(regions);
// region = difference(REGION1,REGION2);
// region = difference(REGION1,REGION2,REGION3);
2019-06-16 23:57:05 -07:00
// Description:
2019-06-18 00:46:05 -07:00
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, takes the first region and differences away all other regions from it. The resulting
// region is returned.
// When called as the built-in module, makes the boolean difference of the given children.
2019-06-16 23:57:05 -07:00
// Arguments:
// regions = List of regions to difference. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
2019-07-12 13:11:13 -07:00
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
2019-06-16 23:57:05 -07:00
// color("green") region(difference(shape1,shape2));
2019-06-17 18:55:10 -07:00
function difference ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? difference ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
2019-06-16 23:57:05 -07:00
len ( regions ) < = 1 ? regions [ 0 ] :
difference (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
2019-06-17 18:55:10 -07:00
[ _tagged_region ( regions [ 0 ] , regions [ 1 ] , [ "O" , "U" ] , [ "I" ] , eps = eps ) ] ,
2019-06-16 23:57:05 -07:00
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
2019-06-17 18:55:10 -07:00
) ,
eps = eps
2019-06-16 23:57:05 -07:00
) ;
2019-06-18 00:46:05 -07:00
// Function&Module: intersection()
2019-06-16 23:57:05 -07:00
// Usage:
2019-06-18 00:46:05 -07:00
// intersection() {...}
// region = intersection(regions);
// region = intersection(REGION1,REGION2);
// region = intersection(REGION1,REGION2,REGION3);
2019-06-16 23:57:05 -07:00
// Description:
2019-06-18 00:46:05 -07:00
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean intersection of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean intersection of all the given children.
2019-06-16 23:57:05 -07:00
// Arguments:
// regions = List of regions to intersection. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
2019-07-12 13:11:13 -07:00
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
2019-06-16 23:57:05 -07:00
// color("green") region(intersection(shape1,shape2));
2019-06-17 18:55:10 -07:00
function intersection ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? intersection ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
2019-06-16 23:57:05 -07:00
len ( regions ) < = 1 ? regions [ 0 ] :
intersection (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
2019-06-17 18:55:10 -07:00
[ _tagged_region ( regions [ 0 ] , regions [ 1 ] , [ "I" , "S" ] , [ "I" ] , eps = eps ) ] ,
2019-06-16 23:57:05 -07:00
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
2019-06-17 18:55:10 -07:00
) ,
eps = eps
2019-06-16 23:57:05 -07:00
) ;
2019-06-18 00:09:51 -07:00
// Function&Module: exclusive_or()
2019-06-16 23:57:05 -07:00
// Usage:
2019-06-18 00:09:51 -07:00
// exclusive_or() {...}
2019-06-18 00:46:05 -07:00
// region = exclusive_or(regions);
// region = exclusive_or(REGION1,REGION2);
// region = exclusive_or(REGION1,REGION2,REGION3);
2019-06-16 23:57:05 -07:00
// Description:
2019-06-18 00:09:51 -07:00
// When called as a function and given a list of regions, where each region is a list of closed
2019-06-18 00:46:05 -07:00
// 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region.
2019-06-18 00:09:51 -07:00
// When called as a module, performs a boolean exclusive-or of up to 10 children.
2019-06-16 23:57:05 -07:00
// Arguments:
// regions = List of regions to exclusive_or. Each region is a list of closed paths.
2019-06-18 00:46:05 -07:00
// Example(2D): As Function
2019-06-16 23:57:05 -07:00
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
2019-06-18 00:46:05 -07:00
// for (shape = [shape1,shape2])
2019-07-12 13:11:13 -07:00
// color("red") stroke(shape, width=0.5, closed=true);
2019-06-16 23:57:05 -07:00
// color("green") region(exclusive_or(shape1,shape2));
2019-06-18 00:46:05 -07:00
// Example(2D): As Module
// exclusive_or() {
// square(40,center=false);
// circle(d=40);
// }
2019-06-17 18:55:10 -07:00
function exclusive_or ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? exclusive_or ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
2019-06-16 23:57:05 -07:00
len ( regions ) < = 1 ? regions [ 0 ] :
exclusive_or (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
[ union ( [
2019-06-17 18:55:10 -07:00
difference ( [ regions [ 0 ] , regions [ 1 ] ] , eps = eps ) ,
difference ( [ regions [ 1 ] , regions [ 0 ] ] , eps = eps )
] , eps = eps ) ] ,
2019-06-16 23:57:05 -07:00
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
2019-06-17 18:55:10 -07:00
) ,
eps = eps
2019-06-16 23:57:05 -07:00
) ;
2019-06-18 00:09:51 -07:00
module exclusive_or ( ) {
if ( $children = = 1 ) {
children ( ) ;
} else if ( $children = = 2 ) {
difference ( ) {
children ( 0 ) ;
children ( 1 ) ;
}
difference ( ) {
children ( 1 ) ;
children ( 0 ) ;
}
} else if ( $children = = 3 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
}
children ( 2 ) ;
}
} else if ( $children = = 4 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
}
exclusive_or ( ) {
children ( 2 ) ;
children ( 3 ) ;
}
}
} else if ( $children = = 5 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
children ( 4 ) ;
}
} else if ( $children = = 6 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
children ( 4 ) ;
children ( 5 ) ;
}
} else if ( $children = = 7 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
}
} else if ( $children = = 8 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
exclusive_or ( ) {
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
children ( 7 ) ;
}
}
} else if ( $children = = 9 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
exclusive_or ( ) {
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
children ( 7 ) ;
}
children ( 8 ) ;
}
} else if ( $children = = 10 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
exclusive_or ( ) {
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
children ( 7 ) ;
}
children ( 8 ) ;
children ( 9 ) ;
}
2019-08-11 22:15:37 -07:00
} else {
assert ( $children < = 10 , "exclusive_or() can only handle up to 10 children." ) ;
2019-06-18 00:09:51 -07:00
}
}
2019-06-16 23:57:05 -07:00
// Module: region()
// Usage:
// region(r);
// Description:
2019-06-18 00:46:05 -07:00
// Creates 2D polygons for the given region. The region given is a list of closed 2D paths.
// Each path will be effectively exclusive-ORed from all other paths in the region, so if a
// path is inside another path, it will be effectively subtracted from it.
// Example(2D):
// region([circle(d=50), square(25,center=true)]);
2019-06-16 23:57:05 -07:00
// Example(2D):
2019-06-18 00:46:05 -07:00
// rgn = concat(
// [for (d=[50:-10:10]) circle(d=d-5)],
// [square([60,10], center=true)]
// );
// region(rgn);
2019-06-16 23:57:05 -07:00
module region ( r )
{
points = flatten ( r ) ;
paths = [
for ( i = [ 0 : 1 : len ( r ) - 1 ] ) let (
start = default ( sum ( [ for ( j = [ 0 : 1 : i - 1 ] ) len ( r [ j ] ) ] ) , 0 )
) [ for ( k = [ 0 : 1 : len ( r [ i ] ) - 1 ] ) start + k ]
] ;
polygon ( points = points , paths = paths ) ;
}
2019-08-27 00:34:09 -07:00
// Section: Creating Polyhedrons with VNF Structures
// VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the
// first item is a list of vertex points, and the second is a list of face indices into the vertex
// list. Each VNF is self contained, with face indices referring only to its own vertex list.
// You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then
// merge the various VNFs to get the completed polyhedron vertex list and faces.
// Function: is_vnf()
// Description: Returns true if the given value looks passingly like a VNF structure.
function is_vnf ( x ) = is_list ( x ) && len ( x ) = = 2 && is_list ( x [ 0 ] ) && is_list ( x [ 1 ] ) && ( x [ 0 ] = = [ ] || is_vector ( x [ 0 ] [ 0 ] ) ) && ( x [ 1 ] = = [ ] || is_vector ( x [ 1 ] [ 0 ] ) ) ;
// Function: is_vnf_list()
// Description: Returns true if the given value looks passingly like a list of VNF structures.
function is_vnf_list ( x ) = is_list ( x ) && all ( [ for ( v = x ) is_vnf ( v ) ] ) ;
// Function: vnf_vertices()
// Description: Given a VNF structure, returns the list of vertex points.
function vnf_vertices ( vnf ) = vnf [ 0 ] ;
// Function: vnf_faces()
// Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list.
function vnf_faces ( vnf ) = vnf [ 1 ] ;
// Function: vnf_get_vertex()
// Usage:
// vvnf = vnf_get_vertex(vnf, p);
// Description:
// Finds the index number of the given vertex point `p` in the given VNF structure `vnf`. If said
// point does not already exist in the VNF vertex list, it is added. Returns: `[INDEX, VNF]` where
// INDEX if the index of the point, and VNF is the possibly modified new VNF structure.
// If `p` is given as a list of points, then INDEX will be a list of indices.
// Arguments:
// vnf = The VNF structue to get the point index from.
// p = The point, or list of points to get the index of.
// Example:
// vnf1 = vnf_get_vertex(p=[3,5,8]); // Returns: [0, [[[3,5,8]],[]]]
// vnf2 = vnf_get_vertex(vnf1, p=[3,2,1]); // Returns: [1, [[[3,5,8],[3,2,1]],[]]]
// vnf3 = vnf_get_vertex(vnf2, p=[3,5,8]); // Returns: [0, [[[3,5,8],[3,2,1]],[]]]
// vnf4 = vnf_get_vertex(vnf3, p=[[1,3,2],[3,2,1]]); // Returns: [[1,2], [[[3,5,8],[3,2,1],[1,3,2]],[]]]
function vnf_get_vertex ( vnf = [ [ ] , [ ] ] , p ) =
is_path ( p ) ? _vnf_get_vertices ( vnf , p ) :
let (
p = quant ( p , 1 / 1024 ) , // OpenSCAD internally quantizes objects to 1/1024.
v = search ( [ p ] , vnf [ 0 ] ) [ 0 ]
) [
v ! = [ ] ? v : len ( vnf [ 0 ] ) ,
[
concat ( vnf [ 0 ] , v ! = [ ] ? [ ] : [ p ] ) ,
vnf [ 1 ]
]
] ;
// Internal use only
function _vnf_get_vertices ( vnf = [ [ ] , [ ] ] , pts , _i = 0 , _idxs = [ ] ) =
_i >= len ( pts ) ? [ _idxs , vnf ] :
let (
vvnf = vnf_get_vertex ( vnf , pts [ _i ] )
) _vnf_get_vertices ( vvnf [ 1 ] , pts , _i = _i + 1 , _idxs = concat ( _idxs , [ vvnf [ 0 ] ] ) ) ;
// Function: vnf_add_face()
// Usage:
// vnf_add_face(vnf, pts);
// Description:
// Given a VNF structure and a list of face vertex points, adds the face to the VNF structure.
// Returns the modified VNF structure `[VERTICES, FACES]`. It is up to the caller to make
// sure that the points are in the correct order to make the face normal point outwards.
// Arguments:
// vnf = The VNF structure to add a face to.
// pts = The vertex points for the face.
function vnf_add_face ( vnf = [ [ ] , [ ] ] , pts ) =
let (
vvnf = vnf_get_vertex ( vnf , pts ) ,
face = deduplicate ( vvnf [ 0 ] , closed = true ) ,
vnf2 = vvnf [ 1 ]
) [
vnf_vertices ( vnf2 ) ,
concat ( vnf_faces ( vnf2 ) , len ( face ) > 2 ? [ face ] : [ ] )
] ;
// Function: vnf_add_faces()
// Usage:
// vnf_add_faces(vnf, faces);
// Description:
// Given a VNF structure and a list of faces, where each face is given as a list of vertex points,
// adds the faces to the VNF structure. Returns the modified VNF structure `[VERTICES, FACES]`.
// It is up to the caller to make sure that the points are in the correct order to make the face
// normals point outwards.
// Arguments:
// vnf = The VNF structure to add a face to.
// faces = The list of faces, where each face is given as a list of vertex points.
function vnf_add_faces ( vnf = [ [ ] , [ ] ] , faces , _i = 0 ) =
_i < len ( faces ) ? vnf_add_faces ( vnf_add_face ( vnf , faces [ _i ] ) , faces , _i = _i + 1 ) : vnf ;
// Function: vnf_merge()
// Usage:
// vnf = vnf_merge([VNF, VNF, VNF, ...]);
// Description:
// Given a list of VNF structures, merges them all into a single VNF structure.
function vnf_merge ( vnfs = [ ] , _i = 0 , _acc = [ [ ] , [ ] ] ) = _i >= len ( vnfs ) ? _acc :
vnf_merge (
vnfs , _i = _i + 1 ,
_acc = let ( base = len ( _acc [ 0 ] ) ) [
concat ( _acc [ 0 ] , vnfs [ _i ] [ 0 ] ) ,
concat ( _acc [ 1 ] , [ for ( f = vnfs [ _i ] [ 1 ] ) [ for ( i = f ) i + base ] ] ) ,
]
) ;
// Function: vnf_triangulate()
// Usage:
// vnf2 = vnf_triangulate(vnf);
// Description:
// Forces triangulation of faces in the VNF that have more than 3 vertices.
function vnf_triangulate ( vnf ) =
let (
vnf = is_vnf_list ( vnf ) ? vnf_merge ( vnf ) : vnf
) [ vnf [ 0 ] , triangulate_faces ( vnf [ 0 ] , vnf [ 1 ] ) ] ;
// Function: vnf_vertex_array()
// Usage:
// vnf = vnf_vertex_array(points, cols, [caps], [cap1], [cap2], [reverse], [col_wrap], [row_wrap], [vnf]);
// Description:
// Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows,
// adding faces to tile the surface. You can optionally have faces added to wrap the last column
// back to the first column, or wrap the last row to the first. Endcaps can be added to either
// the first and/or last rows.
// Arguments:
// points = A list of vertices to divide into columns and rows.
// cols = The number of points in a column.
// caps = If true, add endcap faces to the first AND last rows.
// cap1 = If true, add an endcap face to the first row.
// cap2 = If true, add an endcap face to the last row.
// col_wrap = If true, add faces to connect the last column to the first.
// row_wrap = If true, add faces to connect the last row to the first.
// reverse = If true, reverse all face normals.
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx".
// vnf = If given, add all the vertices and faces to this existing VNF structure.
// Example(3D):
// vnf = vnf_vertex_array(
// points=[
2019-08-29 17:58:12 -07:00
// for (h = [0:5:180-EPSILON]) [
// for (t = [0:5:360-EPSILON])
// cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h)
// ]
2019-08-27 00:34:09 -07:00
// ],
2019-08-29 17:58:12 -07:00
// col_wrap=true, caps=true, reverse=true, style="alt"
2019-08-27 00:34:09 -07:00
// );
// vnf_polyhedron(vnf);
// Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus.
// vnf = vnf_vertex_array(
// points=[
// for (a=[0:5:360-EPSILON])
2019-08-29 17:58:12 -07:00
// affine3d_apply(
// circle(d=20),
// [xrot(90), right(30), zrot(a)]
// )
2019-08-27 00:34:09 -07:00
// ],
2019-08-29 17:58:12 -07:00
// col_wrap=true, row_wrap=true, reverse=true
2019-08-27 00:34:09 -07:00
// );
// vnf_polyhedron(vnf);
// Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same.
// vnf = vnf_vertex_array(
// points=[
2019-08-29 17:58:12 -07:00
// for (a=[0:5:360]) affine3d_apply(
// square([1,10], center=true),
// [zrot(a/2+60), xrot(90), right(30), zrot(a)]
// )
2019-08-27 00:34:09 -07:00
// ],
2019-08-29 17:58:12 -07:00
// col_wrap=true, reverse=true
2019-08-27 00:34:09 -07:00
// );
// vnf_polyhedron(vnf);
// Example(3D): Assembling a Polyhedron from Multiple Parts
2019-08-29 17:58:12 -07:00
// wall_points = [
// for (a = [-90:2:90]) affine3d_apply(
// circle(d=100),
// [scale([1-0.1*cos(a*6), 1-0.1*cos((a+90)*6), 1]), up(a)]
// )
2019-08-27 00:34:09 -07:00
// ];
2019-08-29 17:58:12 -07:00
// cap = [
// for (a = [0:0.01:1+EPSILON]) affine3d_apply(
// wall_points[0],
// [scale([a,a,1]), up(90-5*sin(a*360*2))]
// )
2019-08-27 00:34:09 -07:00
// ];
2019-08-29 17:58:12 -07:00
// cap1 = [for (p=cap) down(90, p=zscale(-1, p=p))];
// cap2 = [for (p=cap) up(90, p=p)];
// vnf1 = vnf_vertex_array(points=wall_points, col_wrap=true);
// vnf2 = vnf_vertex_array(points=cap1, col_wrap=true);
// vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true);
2019-08-27 00:34:09 -07:00
// vnf_polyhedron([vnf1, vnf2, vnf3]);
function vnf_vertex_array (
2019-08-29 17:58:12 -07:00
points ,
2019-08-27 00:34:09 -07:00
caps , cap1 , cap2 ,
col_wrap = false ,
row_wrap = false ,
reverse = false ,
style = "default" ,
vnf = [ [ ] , [ ] ]
) =
assert ( ( ! caps ) || ( caps && col_wrap ) )
assert ( in_list ( style , [ "default" , "alt" , "quincunx" ] ) )
let (
2019-08-29 17:58:12 -07:00
pts = flatten ( points ) ,
rows = len ( points ) ,
cols = len ( points [ 0 ] ) ,
errchk = [ for ( row = points ) assert ( len ( row ) = = cols , "All rows much have the same number of columns." ) 0 ] ,
2019-08-27 00:34:09 -07:00
cap1 = first_defined ( [ cap1 , caps , false ] ) ,
cap2 = first_defined ( [ cap2 , caps , false ] ) ,
colcnt = cols - ( col_wrap ? 0 : 1 ) ,
rowcnt = rows - ( row_wrap ? 0 : 1 )
)
vnf_merge ( [
vnf , [
concat (
2019-08-29 17:58:12 -07:00
pts ,
2019-08-27 00:34:09 -07:00
style ! = "quincunx" ? [ ] : [
for ( r = [ 0 : 1 : rowcnt - 1 ] ) (
for ( c = [ 0 : 1 : colcnt - 1 ] ) (
let (
i1 = ( ( r + 0 ) % rows ) * cols + ( ( c + 0 ) % cols ) ,
i2 = ( ( r + 1 ) % rows ) * cols + ( ( c + 0 ) % cols ) ,
i3 = ( ( r + 1 ) % rows ) * cols + ( ( c + 1 ) % cols ) ,
i4 = ( ( r + 0 ) % rows ) * cols + ( ( c + 1 ) % cols )
2019-08-29 17:58:12 -07:00
) mean ( [ pts [ i1 ] , pts [ i2 ] , pts [ i3 ] , pts [ i4 ] ] )
2019-08-27 00:34:09 -07:00
)
)
]
) ,
concat (
[
for ( r = [ 0 : 1 : rowcnt - 1 ] ) (
for ( c = [ 0 : 1 : colcnt - 1 ] ) each (
let (
i1 = ( ( r + 0 ) % rows ) * cols + ( ( c + 0 ) % cols ) ,
i2 = ( ( r + 1 ) % rows ) * cols + ( ( c + 0 ) % cols ) ,
i3 = ( ( r + 1 ) % rows ) * cols + ( ( c + 1 ) % cols ) ,
i4 = ( ( r + 0 ) % rows ) * cols + ( ( c + 1 ) % cols )
)
style = = "quincunx" ? (
let ( i5 = pcnt + r * colcnt + c )
reverse ? [ [ i1 , i2 , i5 ] , [ i2 , i3 , i5 ] , [ i3 , i4 , i5 ] , [ i4 , i1 , i5 ] ] : [ [ i1 , i5 , i2 ] , [ i2 , i5 , i3 ] , [ i3 , i5 , i4 ] , [ i4 , i5 , i1 ] ]
) : style = = "alt" ? (
reverse ? [ [ i1 , i2 , i4 ] , [ i2 , i3 , i4 ] ] : [ [ i1 , i4 , i2 ] , [ i2 , i4 , i3 ] ]
) : (
reverse ? [ [ i1 , i2 , i3 ] , [ i1 , i3 , i4 ] ] : [ [ i1 , i3 , i2 ] , [ i1 , i4 , i3 ] ]
)
)
)
] ,
! cap1 ? [ ] : [
reverse ?
[ for ( c = [ 0 : 1 : cols - 1 ] ) c ] :
[ for ( c = [ cols - 1 : - 1 : 0 ] ) c ]
] ,
! cap2 ? [ ] : [
reverse ?
[ for ( c = [ cols - 1 : - 1 : 0 ] ) ( rows - 1 ) * cols + c ] :
[ for ( c = [ 0 : 1 : cols - 1 ] ) ( rows - 1 ) * cols + c ]
]
)
]
] ) ;
// Module: vnf_polyhedron()
// Usage:
// vnf_polyhedron(vnf);
// vnf_polyhedron([VNF, VNF, VNF, ...]);
// Description:
// Given a VNF structure, or a list of VNF structures, creates a polyhedron from them.
// Arguments:
// vnf = A VNF structure, or list of VNF structures.
module vnf_polyhedron ( vnf ) {
vnf = is_vnf_list ( vnf ) ? vnf_merge ( vnf ) : vnf ;
polyhedron ( vnf [ 0 ] , vnf [ 1 ] ) ;
}
2019-06-16 23:57:05 -07:00
2019-04-19 17:02:17 -07:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap