2019-04-19 17:02:17 -07:00
//////////////////////////////////////////////////////////////////////
// LibFile: vectors.scad
// Vector math functions.
2021-01-05 01:20:01 -08:00
// Includes:
// include <BOSL2/std.scad>
2019-04-19 17:02:17 -07:00
//////////////////////////////////////////////////////////////////////
// Section: Vector Manipulation
2019-05-15 21:07:27 -07:00
// Function: is_vector()
// Usage:
2020-07-06 18:28:35 -07:00
// is_vector(v, [length]);
2019-05-15 21:07:27 -07:00
// Description:
2020-03-02 13:47:43 -08:00
// Returns true if v is a list of finite numbers.
// Arguments:
// v = The value to test to see if it is a vector.
// length = If given, make sure the vector is `length` items long.
2020-09-07 23:10:39 -07:00
// zero = If false, require that the length/`norm()` of the vector is not approximately zero. If true, require the length/`norm()` of the vector to be approximately zero-length. Default: `undef` (don't check vector length/`norm()`.)
// all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero. Default: `false`
2020-07-29 21:58:12 -07:00
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
2019-07-04 23:40:24 -07:00
// Example:
2020-07-24 22:54:34 +01:00
// is_vector(4); // Returns false
// is_vector([4,true,false]); // Returns false
// is_vector([3,4,INF,5]); // Returns false
// is_vector([3,4,5,6]); // Returns true
// is_vector([3,4,undef,5]); // Returns false
// is_vector([3,4,5],3); // Returns true
// is_vector([3,4,5],4); // Returns true
// is_vector([]); // Returns false
2020-09-07 23:10:39 -07:00
// is_vector([0,4,0],3,zero=false); // Returns true
// is_vector([0,0,0],zero=false); // Returns false
// is_vector([0,0,1e-12],zero=false); // Returns false
// is_vector([0,1,0],all_nonzero=false); // Returns false
// is_vector([1,1,1],all_nonzero=false); // Returns true
// is_vector([],zero=false); // Returns false
function is_vector ( v , length , zero , all_nonzero = false , eps = EPSILON ) =
2021-03-14 12:08:20 -04:00
is_list ( v ) && len ( v ) > 0 && [ ] = = [ for ( vi = v ) if ( ! is_num ( vi ) ) 0 ]
2020-07-21 16:15:02 -07:00
&& ( is_undef ( length ) || len ( v ) = = length )
2020-09-07 23:10:39 -07:00
&& ( is_undef ( zero ) || ( ( norm ( v ) >= eps ) = = ! zero ) )
&& ( ! all_nonzero || all_nonzero ( v ) ) ;
2019-05-15 21:07:27 -07:00
2019-07-04 23:40:24 -07:00
2019-12-26 21:42:23 -08:00
// Function: vang()
// Usage:
// theta = vang([X,Y]);
// theta_phi = vang([X,Y,Z]);
// Description:
// Given a 2D vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
// Given a 3D vector, returns [THETA,PHI] where THETA is the number of degrees counter-clockwise from X+ on the XY plane, and PHI is the number of degrees up from the X+ axis along the XZ plane.
function vang ( v ) =
2020-07-24 22:54:34 +01:00
assert ( is_vector ( v , 2 ) || is_vector ( v , 3 ) , "Invalid vector" )
2020-05-29 19:04:34 -07:00
len ( v ) = = 2 ? atan2 ( v . y , v . x ) :
let ( res = xyz_to_spherical ( v ) ) [ res [ 1 ] , 90 - res [ 2 ] ] ;
2019-12-26 21:42:23 -08:00
2019-04-19 17:02:17 -07:00
// Function: vmul()
// Description:
2020-09-28 17:35:05 -07:00
// Element-wise multiplication. Multiplies each element of `v1` by the corresponding element of `v2`.
// Both `v1` and `v2` must be the same length. Returns a vector of the products.
2019-04-19 17:02:17 -07:00
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
2020-07-24 22:54:34 +01:00
function vmul ( v1 , v2 ) =
2020-09-28 17:35:05 -07:00
assert ( is_list ( v1 ) && is_list ( v2 ) && len ( v1 ) = = len ( v2 ) , "Incompatible input" )
2020-07-24 22:54:34 +01:00
[ for ( i = [ 0 : 1 : len ( v1 ) - 1 ] ) v1 [ i ] * v2 [ i ] ] ;
2020-07-25 20:27:19 +01:00
2019-04-19 17:02:17 -07:00
// Function: vdiv()
// Description:
// Element-wise vector division. Divides each element of vector `v1` by
// the corresponding element of vector `v2`. Returns a vector of the quotients.
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5]
2020-07-24 22:54:34 +01:00
function vdiv ( v1 , v2 ) =
assert ( is_vector ( v1 ) && is_vector ( v2 , len ( v1 ) ) , "Incompatible vectors" )
[ for ( i = [ 0 : 1 : len ( v1 ) - 1 ] ) v1 [ i ] / v2 [ i ] ] ;
2019-04-19 17:02:17 -07:00
// Function: vabs()
// Description: Returns a vector of the absolute value of each element of vector `v`.
// Arguments:
// v = The vector to get the absolute values of.
2019-07-04 23:40:24 -07:00
// Example:
// vabs([-1,3,-9]); // Returns: [1,3,9]
2020-07-24 22:54:34 +01:00
function vabs ( v ) =
assert ( is_vector ( v ) , "Invalid vector" )
[ for ( x = v ) abs ( x ) ] ;
2019-04-19 17:02:17 -07:00
2020-03-25 19:50:38 -07:00
// Function: vfloor()
// Description:
// Returns the given vector after performing a `floor()` on all items.
2020-07-24 22:54:34 +01:00
function vfloor ( v ) =
assert ( is_vector ( v ) , "Invalid vector" )
[ for ( x = v ) floor ( x ) ] ;
2020-03-25 19:50:38 -07:00
// Function: vceil()
// Description:
// Returns the given vector after performing a `ceil()` on all items.
2020-07-24 22:54:34 +01:00
function vceil ( v ) =
assert ( is_vector ( v ) , "Invalid vector" )
[ for ( x = v ) ceil ( x ) ] ;
2020-03-25 19:50:38 -07:00
2020-03-20 22:15:41 -07:00
2020-03-02 19:30:20 -08:00
// Function: unit()
2020-07-10 00:03:55 -07:00
// Usage:
2020-07-11 23:23:12 -07:00
// unit(v, [error]);
2019-04-19 17:02:17 -07:00
// Description:
2020-07-11 23:23:12 -07:00
// Returns the unit length normalized version of vector v. If passed a zero-length vector,
// asserts an error unless `error` is given, in which case the value of `error` is returned.
2019-04-19 17:02:17 -07:00
// Arguments:
// v = The vector to normalize.
2020-07-11 23:23:12 -07:00
// error = If given, and input is a zero-length vector, this value is returned. Default: Assert error on zero-length vector.
2019-07-04 23:40:24 -07:00
// Examples:
2020-03-02 19:30:20 -08:00
// unit([10,0,0]); // Returns: [1,0,0]
// unit([0,10,0]); // Returns: [0,1,0]
// unit([0,0,10]); // Returns: [0,0,1]
// unit([0,-10,0]); // Returns: [0,-1,0]
2020-07-10 00:03:55 -07:00
// unit([0,0,0],[1,2,3]); // Returns: [1,2,3]
// unit([0,0,0]); // Asserts an error.
2020-07-11 23:23:12 -07:00
function unit ( v , error = [ [ [ "ASSERT" ] ] ] ) =
2020-07-10 00:03:55 -07:00
assert ( is_vector ( v ) , str ( "Expected a vector. Got: " , v ) )
2021-02-24 16:56:21 -05:00
norm ( v ) < EPSILON ? ( error = = [ [ [ "ASSERT" ] ] ] ? assert ( norm ( v ) >= EPSILON , "Tried to normalize a zero vector" ) : error ) :
2020-07-10 00:03:55 -07:00
v / norm ( v ) ;
2019-04-19 17:02:17 -07:00
// Function: vector_angle()
// Usage:
// vector_angle(v1,v2);
2020-07-24 22:54:34 +01:00
// vector_angle([v1,v2]);
2019-05-14 19:36:32 -07:00
// vector_angle(PT1,PT2,PT3);
2019-05-14 19:44:00 -07:00
// vector_angle([PT1,PT2,PT3]);
2019-04-19 17:02:17 -07:00
// Description:
2019-05-14 19:36:32 -07:00
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
2019-07-04 23:40:24 -07:00
// If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
2019-05-14 19:36:32 -07:00
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
2019-04-19 17:02:17 -07:00
// Arguments:
2019-05-14 19:36:32 -07:00
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
2019-07-04 23:40:24 -07:00
// Examples:
// vector_angle(UP,LEFT); // Returns: 90
// vector_angle(RIGHT,LEFT); // Returns: 180
// vector_angle(UP+RIGHT,RIGHT); // Returns: 45
// vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
2020-04-02 18:15:43 -07:00
function vector_angle ( v1 , v2 , v3 ) =
2020-07-24 22:54:34 +01:00
assert ( ( is_undef ( v3 ) && ( is_undef ( v2 ) || same_shape ( v1 , v2 ) ) )
|| is_consistent ( [ v1 , v2 , v3 ] ) ,
"Bad arguments." )
assert ( is_vector ( v1 ) || is_consistent ( v1 ) , "Bad arguments." )
let ( vecs = ! is_undef ( v3 ) ? [ v1 - v2 , v3 - v2 ] :
! is_undef ( v2 ) ? [ v1 , v2 ] :
len ( v1 ) = = 3 ? [ v1 [ 0 ] - v1 [ 1 ] , v1 [ 2 ] - v1 [ 1 ] ]
: v1
2020-05-29 19:04:34 -07:00
)
2020-07-24 22:54:34 +01:00
assert ( is_vector ( vecs [ 0 ] , 2 ) || is_vector ( vecs [ 0 ] , 3 ) , "Bad arguments." )
2020-05-29 19:04:34 -07:00
let (
norm0 = norm ( vecs [ 0 ] ) ,
norm1 = norm ( vecs [ 1 ] )
)
2020-07-24 22:54:34 +01:00
assert ( norm0 > 0 && norm1 > 0 , "Zero length vector." )
2020-05-29 19:04:34 -07:00
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
acos ( constrain ( ( vecs [ 0 ] * vecs [ 1 ] ) / ( norm0 * norm1 ) , - 1 , 1 ) ) ;
2020-07-24 22:54:34 +01:00
2019-04-19 17:02:17 -07:00
// Function: vector_axis()
// Usage:
2019-05-14 19:36:32 -07:00
// vector_axis(v1,v2);
2020-07-24 22:54:34 +01:00
// vector_axis([v1,v2]);
2019-05-14 19:44:00 -07:00
// vector_axis(PT1,PT2,PT3);
// vector_axis([PT1,PT2,PT3]);
2019-04-19 17:02:17 -07:00
// Description:
2019-05-14 19:44:00 -07:00
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
2020-07-24 22:54:34 +01:00
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
2019-04-19 17:02:17 -07:00
// Arguments:
2019-05-14 19:44:00 -07:00
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
2019-07-04 23:40:24 -07:00
// Examples:
// vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
// vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
// vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
// vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
2019-05-14 19:36:32 -07:00
function vector_axis ( v1 , v2 = undef , v3 = undef ) =
2020-07-21 16:15:02 -07:00
is_vector ( v3 )
? assert ( is_consistent ( [ v3 , v2 , v1 ] ) , "Bad arguments." )
vector_axis ( v1 - v2 , v3 - v2 )
2020-07-24 22:54:34 +01:00
: assert ( is_undef ( v3 ) , "Bad arguments." )
is_undef ( v2 )
? assert ( is_list ( v1 ) , "Bad arguments." )
len ( v1 ) = = 2
? vector_axis ( v1 [ 0 ] , v1 [ 1 ] )
: vector_axis ( v1 [ 0 ] , v1 [ 1 ] , v1 [ 2 ] )
: assert ( is_vector ( v1 , zero = false ) && is_vector ( v2 , zero = false ) && is_consistent ( [ v1 , v2 ] )
, "Bad arguments." )
let (
eps = 1e-6 ,
w1 = point3d ( v1 / norm ( v1 ) ) ,
w2 = point3d ( v2 / norm ( v2 ) ) ,
w3 = ( norm ( w1 - w2 ) > eps && norm ( w1 + w2 ) > eps ) ? w2
: ( norm ( vabs ( w2 ) - UP ) > eps ) ? UP
: RIGHT
) unit ( cross ( w1 , w3 ) ) ;
2021-05-11 20:51:09 -04:00
// Section: Vector Searching
// Function: vp_tree()
// Usage:
// tree = vp_tree(points, <leafsize>)
// Description:
// Organizes n-dimensional data into a Vantage Point Tree, which can be
// efficiently searched for for nearest matches. The Vantage Point Tree
// is an effort to generalize binary search to n dimensions. Constructing the
// tree should be O(n log n) and searches should be O(log n), though real life
// performance depends on how the data is distributed, and it will deteriorate
// for high data dimensions. This data structure is useful when you will be
// performing many searches of the same data, so that the cost of constructing
// the tree is justified.
// .
// The vantage point tree at a given level chooses vp, the
// "vantage point", and a radius, R, and divides the data based
// on distance to vp. Points closer than R go in on branch
// of the tree and points farther than R go in the other branch.
// .
// The tree has the form [vp, R, inside, outside], where vp is
// the vantage point index, R is the radius, inside is a
// recursively computed tree for the inside points (distance less than
// or equal to R from the vantage point), and outside
// is a tree for the outside points (distance greater than R from the
// vantage point).
// .
// If the number of points is less than or equal to leafsize then
// vp_tree instead returns the list [ind] where ind is a list of
// the indices of the points. This means the list has the form
// [[i0, i1, i2,...]], so tree[0] is a list of indices. You can
// tell that a node is a leaf node by checking if tree[0] is a list.
// The leafsize parameter determines how many points can be
// store in the leaf nodes. The default value of 25 was found
// emperically to be a reasonable option for 3d data searched with vp_search().
// .
// Vantage point tree is described here: http://web.cs.iastate.edu/~honavar/nndatastructures.pdf
// Arguments:
// points = list of points to store in the tree
// leafsize = maximum number of points to store in the tree's leaf nodes. Default: 25
function vp_tree ( points , leafsize = 25 ) =
assert ( is_matrix ( points ) , "points must be a consistent list of data points" )
2021-05-14 16:22:11 -04:00
_vp_tree ( points , count ( len ( points ) ) , leafsize ) ;
2021-05-11 20:51:09 -04:00
function _vp_tree ( ptlist , ind , leafsize ) =
len ( ind ) < = leafsize ? [ ind ] :
let (
center = mean ( select ( ptlist , ind ) ) ,
cdistances = [ for ( i = ind ) norm ( ptlist [ i ] - center ) ] ,
vpind = ind [ max_index ( cdistances ) ] ,
vp = ptlist [ vpind ] ,
vp_dist = [ for ( i = ind ) norm ( vp - ptlist [ i ] ) ] ,
r = ninther ( vp_dist ) ,
inside = [ for ( i = idx ( ind ) ) if ( vp_dist [ i ] < = r && ind [ i ] ! = vpind ) ind [ i ] ] ,
outside = [ for ( i = idx ( ind ) ) if ( vp_dist [ i ] > r ) ind [ i ] ]
)
[ vpind , r , _vp_tree ( ptlist , inside , leafsize ) , _vp_tree ( ptlist , outside , leafsize ) ] ;
// Function: vp_search()
// Usage:
// indices = vp_search(points, tree, p, r);
// Description:
// Search a vantage point tree for all points whose distance from p
// is less than or equal to r. Returns a list of indices of the points it finds
// in arbitrary order. The input points is a list of points to search and tree is the
// vantage point tree computed from that point list. The search should be
// around O(log n).
// Arguments:
// points = points indexed by the vantage point tree
// tree = vantage point tree from vp_tree
// p = point to search for
// r = search radius
function _vp_search ( points , tree , p , r ) =
is_list ( tree [ 0 ] ) ? [ for ( i = tree [ 0 ] ) if ( norm ( points [ i ] - p ) < = r ) i ]
:
let (
d = norm ( p - points [ tree [ 0 ] ] ) // dist to vantage point
)
[
if ( d < = r ) tree [ 0 ] ,
if ( d - r < = tree [ 1 ] ) each _vp_search ( points , tree [ 2 ] , p , r ) ,
if ( d + r > tree [ 1 ] ) each _vp_search ( points , tree [ 3 ] , p , r )
] ;
function vp_search ( points , tree , p , r ) =
2021-05-16 19:06:36 -04:00
assert ( is_list ( tree ) && ( len ( tree ) = = 4 || ( len ( tree ) = = 1 && is_list ( tree [ 0 ] ) ) ) , "Vantage point tree not valid" )
2021-05-14 16:22:11 -04:00
assert ( is_matrix ( points ) , "Parameter points is not a consistent point list" )
assert ( is_vector ( p , len ( points [ 0 ] ) ) , "Query must be a vector whose length matches the point list" )
assert ( all_positive ( r ) , "Radius r must be a positive number" )
_vp_search ( points , tree , p , r ) ;
2021-05-11 20:51:09 -04:00
// Function: vp_nearest()
// Usage:
// indices = vp_nearest(points, tree, p, k)
// Description:
// Search the vantage point tree for the k points closest to point p.
// The input points is the list of points to search and tree is
// the vantage point tree computed from that point list. The list is
// returned in sorted order, closest point first.
// Arguments:
// points = points indexed by the vantage point tree
// tree = vantage point tree from vp_tree
// p = point to search for
// k = number of neighbors to return
function _insert_sorted ( list , k , new ) =
len ( list ) = = k && new [ 1 ] >= last ( list ) [ 1 ] ? list
: [
for ( entry = list ) if ( entry [ 1 ] < = new [ 1 ] ) entry ,
new ,
for ( i = [ 0 : 1 : min ( k - 1 , len ( list ) ) - 1 ] ) if ( list [ i ] [ 1 ] > new [ 1 ] ) list [ i ]
] ;
function _insert_many ( list , k , newlist , i = 0 ) =
i = = len ( newlist ) ? list :
_insert_many ( _insert_sorted ( list , k , newlist [ i ] ) , k , newlist , i + 1 ) ;
function _vp_nearest ( points , tree , p , k , answers = [ ] ) =
is_list ( tree [ 0 ] ) ? _insert_many ( answers , k , [ for ( entry = tree [ 0 ] ) [ entry , norm ( points [ entry ] - p ) ] ] ) :
let (
d = norm ( p - points [ tree [ 0 ] ] ) ,
answers1 = _insert_sorted ( answers , k , [ tree [ 0 ] , d ] ) ,
answers2 = d - last ( answers1 ) [ 1 ] < = tree [ 1 ] ? _vp_nearest ( points , tree [ 2 ] , p , k , answers1 ) : answers1 ,
answers3 = d + last ( answers2 ) [ 1 ] > tree [ 1 ] ? _vp_nearest ( points , tree [ 3 ] , p , k , answers2 ) : answers2
)
answers3 ;
function vp_nearest ( points , tree , p , k ) =
assert ( is_int ( k ) && k > 0 )
assert ( k < = len ( points ) , "You requested more results that contained in the set" )
assert ( is_matrix ( points ) , "Parameter points is not a consistent point list" )
assert ( is_vector ( p , len ( points [ 0 ] ) ) , "Query must be a vector whose length matches the point list" )
assert ( is_list ( tree ) && ( len ( tree ) = = 4 || ( len ( tree ) = = 1 && is_list ( tree [ 0 ] ) ) ) , "Vantage point tree not valid" )
subindex ( _vp_nearest ( points , tree , p , k ) , 0 ) ;
2020-05-29 19:04:34 -07:00
2021-05-14 06:23:33 -04:00
// Function: search_radius()
// Usage:
// index_list = search_radius(points, queries, r, <leafsize>);
// Description:
// Given a list of points and a compatible list of queries, for each query
// search the points list for all points whose distance from the query
// is less than or equal to r. The return value index_list[i] lists the indices
// in points of all matches to query q[i]. This list can be in arbitrary order.
// .
// This function is advantageous to use especially when both `points` and `queries`
// are large sets. The method contructs a vantage point tree and then uses it
// to check all the queries. If you use queries=points and set r to epsilon then
// you can find all of the approximate duplicates in a large list of vectors.
// Example: Finding duplicates in a list of vectors. With exact equality the order of the output is consistent, but with small variations [2,4] could occur in one position and [4,2] in the other one.
2021-05-14 16:34:35 -04:00
// v = array_group(rands(0,10,5*3,seed=9),3);
// points = [v[0],v[1],v[2],v[3],v[2],v[3],v[3],v[4]];
// echo(search_radius(points,points,1e-9)); // Prints [[0],[1],[2,4],[3,5,6],[2,4],[3,5,6],[3,5,6],[7]]
2021-05-14 06:23:33 -04:00
//
function search_radius ( points , queries , r , leafsize = 25 ) =
assert ( is_matrix ( points ) , "Invalid points list" )
assert ( is_matrix ( queries ) , "Invalid query list" )
assert ( len ( points [ 0 ] ) = = len ( queries [ 0 ] ) , "Query vectors don't match length of points" )
let (
vptree = vp_tree ( points , leafsize )
)
[ for ( q = queries ) vp_search ( points , vptree , q , r ) ] ;
2020-05-29 19:04:34 -07:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap