mirror of
https://github.com/revarbat/BOSL2.git
synced 2025-01-16 13:50:23 +01:00
commit
00bf097c57
12
arrays.scad
12
arrays.scad
@ -89,6 +89,18 @@ function select(list, start, end=undef) =
|
||||
: concat([for (i = [s:1:l-1]) list[i]], [for (i = [0:1:e]) list[i]]) ;
|
||||
|
||||
|
||||
// Function: last()
|
||||
// Description:
|
||||
// Returns the last element of a list, or undef if empty.
|
||||
// Usage:
|
||||
// last(list)
|
||||
// Arguments:
|
||||
// list = The list to get the last element of.
|
||||
// Example:
|
||||
// l = [3,4,5,6,7,8,9];
|
||||
// last(l); // Returns 9.
|
||||
function last(list) = list[len(list)-1];
|
||||
|
||||
// Function: slice()
|
||||
// Description:
|
||||
// Returns a slice of a list. The first item is index 0.
|
||||
|
89
common.scad
89
common.scad
@ -312,7 +312,96 @@ function get_height(h=undef,l=undef,height=undef,dflt=undef) =
|
||||
assert(num_defined([h,l,height])<=1,"You must specify only one of `l`, `h`, and `height`")
|
||||
first_defined([h,l,height,dflt]);
|
||||
|
||||
// Function: get_named_args()
|
||||
// Usage:
|
||||
// function f(pos1=_undef, pos2=_undef,...,named1=_undef, named2=_undef, ...) = let(args = get_named_args([pos1, pos2, ...], [[named1, default1], [named2, default2], ...]), named1=args[0], named2=args[1], ...)
|
||||
// Description:
|
||||
// Given the values of some positional and named arguments,
|
||||
// returns a list of the values assigned to named parameters.
|
||||
// in the following steps:
|
||||
// - First, all named parameters which were explicitly assigned in the
|
||||
// function call take their provided value.
|
||||
// - Then, any positional arguments are assigned to remaining unassigned
|
||||
// parameters; this is governed both by the `priority` entries
|
||||
// (if there are `N` positional arguments, then the `N` parameters with
|
||||
// lowest `priority` value will be assigned) and by the order of the
|
||||
// positional arguments (matching that of the assigned named parameters).
|
||||
// If no priority is given, then these two ordering coincide:
|
||||
// parameters are assigned in order, starting from the first one.
|
||||
// - Finally, any remaining named parameters can take default values.
|
||||
// If no default values are given, then `undef` is used.
|
||||
// .
|
||||
// This allows an author to declare a function prototype with named or
|
||||
// optional parameters, so that the user may then call this function
|
||||
// using either positional or named parameters. In practice the author
|
||||
// will declare the function as using *both* positional and named
|
||||
// parameters, and let `get_named_args()` do the parsing from the whole
|
||||
// set of arguments.
|
||||
// See the example below.
|
||||
// .
|
||||
// This supports the user explicitly passing `undef` as a function argument.
|
||||
// To distinguish between an intentional `undef` and
|
||||
// the absence of an argument, we use a custom `_undef` value
|
||||
// as a guard marking the absence of any arguments
|
||||
// (in practice, `_undef` is a random-generated string,
|
||||
// which will never coincide with any useful user value).
|
||||
// This forces the author to declare all the function parameters
|
||||
// as having `_undef` as their default value.
|
||||
// Arguments:
|
||||
// positional = the list of values of positional arguments.
|
||||
// named = the list of named arguments; each entry of the list has the form `[passed-value, <default-value>, <priority>]`, where `passed-value` is the value that was passed at function call; `default-value` is the value that will be used if nothing is read from either named or positional arguments; `priority` is the priority assigned to this argument (lower means more priority, default value is `+inf`). Since stable sorting is used, if no priority at all is given, all arguments will be read in order.
|
||||
// _undef = the default value used by the calling function for all arguments. The default value, `_undef`, is a random string. This value **must** be the default value of all parameters in the outer function call (see example below).
|
||||
//
|
||||
// Example: a function with prototype `f(named1,< <named2>, named3 >)`
|
||||
// function f(_p1=_undef, _p2=_undef, _p3=_undef,
|
||||
// arg1=_undef, arg2=_undef, arg3=_undef) =
|
||||
// let(named = get_named_args([_p1, _p2, _p3],
|
||||
// [[arg1, "default1",0], [arg2, "default2",2], [arg3, "default3",1]]))
|
||||
// named;
|
||||
// // all default values or all parameters provided:
|
||||
// echo(f());
|
||||
// // ["default1", "default2", "default3"]
|
||||
// echo(f("given2", "given3", arg1="given1"));
|
||||
// // ["given1", "given2", "given3"]
|
||||
//
|
||||
// // arg1 has highest priority, and arg3 is higher than arg2:
|
||||
// echo(f("given1"));
|
||||
// // ["given1", "default2", "default3"]
|
||||
// echo(f("given3", arg1="given1"));
|
||||
// // ["given1", "default2", "given3"]
|
||||
//
|
||||
// // explicitly passing undef is allowed:
|
||||
// echo(f(undef, arg1="given1", undef));
|
||||
// // ["given1", undef, undef]
|
||||
|
||||
// a value that the user should never enter randomly;
|
||||
// result of `dd if=/dev/random bs=32 count=1 |base64` :
|
||||
_undef="LRG+HX7dy89RyHvDlAKvb9Y04OTuaikpx205CTh8BSI";
|
||||
|
||||
/* Note: however tempting it might be, it is *not* possible to accept
|
||||
* named argument as a list [named1, named2, ...] (without default
|
||||
* values), because the values [named1, named2...] themselves might be
|
||||
* lists, and we will not be able to distinguish the two cases. */
|
||||
function get_named_args(positional, named,_undef=_undef) =
|
||||
let(deft = [for(p=named) p[1]], // default is undef
|
||||
// indices of the values to fetch from positional args:
|
||||
unknown = [for(x=enumerate(named)) if(x[1][0]==_undef) x[0]],
|
||||
// number of values given to positional arguments:
|
||||
n_positional = count_true([for(p=positional) p!=_undef]))
|
||||
assert(n_positional <= len(unknown),
|
||||
str("too many positional arguments (", n_positional, " given, ",
|
||||
len(unknown), " required)"))
|
||||
let(
|
||||
// those elements which have no priority assigned go last (prio=+∞):
|
||||
prio = sortidx([for(u=unknown) default(named[u][2], 1/0)]),
|
||||
// list of indices of values assigned from positional arguments:
|
||||
assigned = [for(a=sort([for(i=[0:1:n_positional-1]) prio[i]]))
|
||||
unknown[a]])
|
||||
[ for(e = enumerate(named))
|
||||
let(idx=e[0], val=e[1][0], ass=search(idx, assigned))
|
||||
val != _undef ? val :
|
||||
ass != [] ? positional[ass[0]] :
|
||||
deft[idx] ];
|
||||
// Function: scalar_vec3()
|
||||
// Usage:
|
||||
// scalar_vec3(v, <dflt>);
|
||||
|
110
mutators.scad
110
mutators.scad
@ -64,13 +64,20 @@ module bounding_box(excess=0) {
|
||||
}
|
||||
|
||||
|
||||
// Module: half_of()
|
||||
// Function&Module: half_of()
|
||||
//
|
||||
// Usage:
|
||||
// half_of(v, [cp], [s]) ...
|
||||
// Usage: as module
|
||||
// half_of(v, <cp>, <s>) ...
|
||||
// Usage: as function
|
||||
// half_of(v, <cp>, p, <s>)...
|
||||
//
|
||||
// Description:
|
||||
// Slices an object at a cut plane, and masks away everything that is on one side.
|
||||
// * Called as a function with a path in the `p` argument, returns the
|
||||
// intersection of path `p` and given half-space.
|
||||
// * Called as a function with a 2D path in the `p` argument
|
||||
// and a 2D vector `p`, returns the intersection of path `p` and given
|
||||
// half-plane.
|
||||
//
|
||||
// Arguments:
|
||||
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
|
||||
@ -111,12 +118,54 @@ module half_of(v=UP, cp, s=1000, planar=false)
|
||||
}
|
||||
}
|
||||
|
||||
function half_of(_arg1=_undef, _arg2=_undef, _arg3=_undef, _arg4=_undef,
|
||||
v=_undef, cp=_undef, p=_undef, s=_undef) =
|
||||
let(args=get_named_args([_arg1, _arg2, _arg3, _arg4],
|
||||
[[v,undef,0], [cp,0,2], [p,undef,1], [s, 1e4]]),
|
||||
v=args[0], cp0=args[1], p=args[2], s=args[3],
|
||||
cp = is_num(cp0) ? cp0*unit(v) : cp0)
|
||||
assert(is_vector(v,2)||is_vector(v,3),
|
||||
"must provide a half-plane or half-space")
|
||||
let(d=len(v))
|
||||
assert(len(cp) == d, str("cp must have dimension ", d))
|
||||
is_vector(p) ?
|
||||
assert(len(p) == d, str("vector must have dimension ", d))
|
||||
let(z=(p-cp)*v) (z >= 0 ? p : p - (z*v)/(v*v))
|
||||
:
|
||||
p == [] ? [] : // special case: empty path remains empty
|
||||
is_path(p) ?
|
||||
assert(len(p[0]) == d, str("path must have dimension ", d))
|
||||
let(z = [for(x=p) (x-cp)*v])
|
||||
[ for(i=[0:len(p)-1]) each concat(z[i] >= 0 ? [p[i]] : [],
|
||||
// we assume a closed path here;
|
||||
// to make this correct for an open path,
|
||||
// just replace this by [] when i==len(p)-1:
|
||||
let(j=(i+1)%len(p))
|
||||
// the remaining path may have flattened sections, but this cannot
|
||||
// create self-intersection or whiskers:
|
||||
z[i]*z[j] >= 0 ? [] : [(z[j]*p[i]-z[i]*p[j])/(z[j]-z[i])]) ]
|
||||
:
|
||||
is_vnf(p) ?
|
||||
// we must put is_vnf() before is_region(), because most triangulated
|
||||
// VNFs will pass is_region() test
|
||||
vnf_halfspace(halfspace=concat(v,[-v*cp]), vnf=p) :
|
||||
is_region(p) ?
|
||||
assert(len(v) == 2, str("3D vector not compatible with region"))
|
||||
let(u=unit(v), w=[-u[1], u[0]],
|
||||
R=[[cp+s*w, cp+s*(v+v), cp+s*(v-w), cp-s*w]]) // half-plane
|
||||
intersection(R, p)
|
||||
:
|
||||
assert(false, "must pass either a point, a path, a region, or a VNF");
|
||||
|
||||
// Module: left_half()
|
||||
// Function&Module: left_half()
|
||||
//
|
||||
// Usage:
|
||||
// left_half([s], [x]) ...
|
||||
// left_half(planar=true, [s], [x]) ...
|
||||
// Usage: as module
|
||||
// left_half(<s>, <x>) ...
|
||||
// left_half(planar=true, <s>, <x>) ...
|
||||
// Usage: as function
|
||||
// left_half(<s>, <x>, path)
|
||||
// left_half(<s>, <x>, region)
|
||||
// left_half(<s>, <x>, vnf)
|
||||
//
|
||||
// Description:
|
||||
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
|
||||
@ -145,15 +194,22 @@ module left_half(s=1000, x=0, planar=false)
|
||||
}
|
||||
}
|
||||
}
|
||||
function left_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
||||
x=_undef, p=_undef, s=_undef) =
|
||||
let(args=get_named_args([_arg1, _arg2, _arg3],
|
||||
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
||||
x=args[0], p=args[1], s=args[2])
|
||||
half_of(v=[1,0,0], cp=x, p=p);
|
||||
|
||||
|
||||
|
||||
// Module: right_half()
|
||||
// Function&Module: right_half()
|
||||
//
|
||||
// Usage:
|
||||
// right_half([s], [x]) ...
|
||||
// right_half(planar=true, [s], [x]) ...
|
||||
//
|
||||
//
|
||||
// Description:
|
||||
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
|
||||
//
|
||||
@ -181,10 +237,16 @@ module right_half(s=1000, x=0, planar=false)
|
||||
}
|
||||
}
|
||||
}
|
||||
function right_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
||||
x=_undef, p=_undef, s=_undef) =
|
||||
let(args=get_named_args([_arg1, _arg2, _arg3],
|
||||
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
||||
x=args[0], p=args[1], s=args[2])
|
||||
half_of(v=[-1,0,0], cp=x, p=p);
|
||||
|
||||
|
||||
|
||||
// Module: front_half()
|
||||
// Function&Module: front_half()
|
||||
//
|
||||
// Usage:
|
||||
// front_half([s], [y]) ...
|
||||
@ -217,10 +279,16 @@ module front_half(s=1000, y=0, planar=false)
|
||||
}
|
||||
}
|
||||
}
|
||||
function front_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
||||
x=_undef, p=_undef, s=_undef) =
|
||||
let(args=get_named_args([_arg1, _arg2, _arg3],
|
||||
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
||||
x=args[0], p=args[1], s=args[2])
|
||||
half_of(v=[0,1,0], cp=x, p=p);
|
||||
|
||||
|
||||
|
||||
// Module: back_half()
|
||||
// Function&Module: back_half()
|
||||
//
|
||||
// Usage:
|
||||
// back_half([s], [y]) ...
|
||||
@ -253,10 +321,16 @@ module back_half(s=1000, y=0, planar=false)
|
||||
}
|
||||
}
|
||||
}
|
||||
function back_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
||||
x=_undef, p=_undef, s=_undef) =
|
||||
let(args=get_named_args([_arg1, _arg2, _arg3],
|
||||
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
||||
x=args[0], p=args[1], s=args[2])
|
||||
half_of(v=[0,-1,0], cp=x, p=p);
|
||||
|
||||
|
||||
|
||||
// Module: bottom_half()
|
||||
// Function&Module: bottom_half()
|
||||
//
|
||||
// Usage:
|
||||
// bottom_half([s], [z]) ...
|
||||
@ -281,10 +355,16 @@ module bottom_half(s=1000, z=0)
|
||||
}
|
||||
}
|
||||
}
|
||||
function right_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
||||
x=_undef, p=_undef, s=_undef) =
|
||||
let(args=get_named_args([_arg1, _arg2, _arg3],
|
||||
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
||||
x=args[0], p=args[1], s=args[2])
|
||||
half_of(v=[0,0,-1], cp=x, p=p);
|
||||
|
||||
|
||||
|
||||
// Module: top_half()
|
||||
// Function&Module: top_half()
|
||||
//
|
||||
// Usage:
|
||||
// top_half([s], [z]) ...
|
||||
@ -309,6 +389,12 @@ module top_half(s=1000, z=0)
|
||||
}
|
||||
}
|
||||
}
|
||||
function right_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
||||
x=_undef, p=_undef, s=_undef) =
|
||||
let(args=get_named_args([_arg1, _arg2, _arg3],
|
||||
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
||||
x=args[0], p=args[1], s=args[2])
|
||||
half_of(v=[0,0,1], cp=x, p=p);
|
||||
|
||||
|
||||
|
||||
|
139
vnf.scad
139
vnf.scad
@ -827,5 +827,144 @@ module vnf_validate(vnf, size=1, show_warns=true, check_isects=false) {
|
||||
color([0.5,0.5,0.5,0.5]) vnf_polyhedron(vnf);
|
||||
}
|
||||
|
||||
// Section: VNF transformations
|
||||
//
|
||||
|
||||
// Function: vnf_halfspace(halfspace, vnf)
|
||||
// Usage:
|
||||
// vnf_halfspace([a,b,c,d], vnf)
|
||||
// Description:
|
||||
// returns the intersection of the VNF with the given half-space.
|
||||
// Arguments:
|
||||
// halfspace = half-space to intersect with, given as the four coefficients of the affine inequation a\*x+b\*y+c\*z≥ d.
|
||||
|
||||
function _vnf_halfspace_pts(halfspace, points, faces,
|
||||
inside=undef, coords=[], map=[]) =
|
||||
/* Recursive function to compute the intersection of points (and edges,
|
||||
* but not faces) with with the half-space.
|
||||
* Parameters:
|
||||
* halfspace a vector(4)
|
||||
* points a list of points3d
|
||||
* faces a list of indexes in points
|
||||
* inside a vector{bool} determining which points belong to the
|
||||
* half-space; if undef, it is initialized at first loop.
|
||||
* coords the coordinates of the points in the intersection
|
||||
* map the logical map (old point) → (new point(s)):
|
||||
* if point i is kept, then map[i] = new-index-for-i;
|
||||
* if point i is dropped, then map[i] = [[j1, k1], [j2, k2], …],
|
||||
* where points j1,… are kept (old index)
|
||||
* and k1,… are the matching intersections (new index).
|
||||
* Returns the triple [coords, map, inside].
|
||||
*
|
||||
*/
|
||||
let(i=len(map), n=len(coords)) // we are currently processing point i
|
||||
// termination test:
|
||||
i >= len(points) ? [ coords, map, inside ] :
|
||||
let(inside = !is_undef(inside) ? inside :
|
||||
[for(x=points) halfspace*concat(x,[-1]) >= 0],
|
||||
pi = points[i])
|
||||
// inside half-space: keep the point (and reindex)
|
||||
inside[i] ? _vnf_halfspace_pts(halfspace, points, faces, inside,
|
||||
concat(coords, [pi]), concat(map, [n]))
|
||||
: // else: compute adjacent vertices (adj)
|
||||
let(adj = unique([for(f=faces) let(m=len(f), j=search(i, f)[0])
|
||||
each if(j!=undef) [f[(j+1)%m], f[(j+m-1)%m]] ]),
|
||||
// filter those which lie in half-space:
|
||||
adj2 = [for(x=adj) if(inside[x]) x],
|
||||
zi = halfspace*concat(pi, [-1]))
|
||||
_vnf_halfspace_pts(halfspace, points, faces, inside,
|
||||
// new points: we append all these intersection points
|
||||
concat(coords, [for(j=adj2) let(zj=halfspace*concat(points[j],[-1]))
|
||||
(zi*points[j]-zj*pi)/(zi-zj)]),
|
||||
// map: we add the info
|
||||
concat(map, [[for(y=enumerate(adj2)) [y[1], n+y[0]]]]));
|
||||
function _vnf_halfspace_face(face, map, inside, i=0,
|
||||
newface=[], newedge=[], exit) =
|
||||
/* Recursive function to intersect a face of the VNF with the half-plane.
|
||||
* Arguments:
|
||||
* face: the list of points of the face (old indices).
|
||||
* map: as produced by _vnf_halfspace_pts
|
||||
* inside: vector{bool} containing half-space info
|
||||
* i: index for iteration
|
||||
* exit: boolean; is first point in newedge an exit or an entrance from
|
||||
* half-space?
|
||||
* newface: list of (new indexes of) points on the face
|
||||
* newedge: list of new points on the plane (even number of points)
|
||||
* Return value: [newface, new-edges], where new-edges is a list of
|
||||
* pairs [entrance-node, exit-node] (new indices).
|
||||
*/
|
||||
// termination condition:
|
||||
(i >= len(face)) ? [ newface,
|
||||
// if exit==true then we return newedge[1,0], newedge[3,2], ...
|
||||
// otherwise newedge[0,1], newedge[2,3], ...;
|
||||
// all edges are oriented (entrance->exit), so that by following the
|
||||
// arrows we obtain a correctly-oriented face:
|
||||
let(k = exit ? 0 : 1)
|
||||
[for(i=[0:2:len(newedge)-2]) [newedge[i+k], newedge[i+1-k]]] ]
|
||||
: // recursion case: p is current point on face, q is next point
|
||||
let(p = face[i], q = face[(i+1)%len(face)],
|
||||
// if p is inside half-plane, keep it in the new face:
|
||||
newface0 = inside[p] ? concat(newface, [map[p]]) : newface)
|
||||
// if the current segment does not intersect, this is all:
|
||||
inside[p] == inside[q] ? _vnf_halfspace_face(face, map, inside, i+1,
|
||||
newface0, newedge, exit)
|
||||
: // otherwise, we must add the intersection point:
|
||||
// rename the two points p,q as inner and outer point:
|
||||
let(in = inside[p] ? p : q, out = p+q-in,
|
||||
inter=[for(a=map[out]) if(a[0]==in) a[1]][0])
|
||||
_vnf_halfspace_face(face, map, inside, i+1,
|
||||
concat(newface0, [inter]),
|
||||
concat(newedge, [inter]),
|
||||
is_undef(exit) ? inside[p] : exit);
|
||||
function _vnf_halfspace_path_search_edge(edge, paths, i=0, ret=[undef,undef]) =
|
||||
/* given an oriented edge [x,y] and a set of oriented paths,
|
||||
* returns the indices [i,j] of paths [before, after] given edge
|
||||
*/
|
||||
// termination condition
|
||||
i >= len(paths) ? ret:
|
||||
_vnf_halfspace_path_search_edge(edge, paths, i+1,
|
||||
[last(paths[i]) == edge[0] ? i : ret[0],
|
||||
paths[i][0] == edge[1] ? i : ret[1]]);
|
||||
function _vnf_halfspace_paths(edges, i=0, paths=[]) =
|
||||
/* given a set of oriented edges [x,y],
|
||||
returns all paths [x,y,z,..] that may be formed from these edges.
|
||||
A closed path will be returned with equal first and last point.
|
||||
i: index of currently examined edge
|
||||
*/
|
||||
i >= len(edges) ? paths : // termination condition
|
||||
let(e=edges[i], s = _vnf_halfspace_path_search_edge(e, paths))
|
||||
_vnf_halfspace_paths(edges, i+1,
|
||||
// we keep all paths untouched by e[i]
|
||||
concat([for(i=[0:1:len(paths)-1]) if(i!= s[0] && i != s[1]) paths[i]],
|
||||
is_undef(s[0])? (
|
||||
// fresh e: create a new path
|
||||
is_undef(s[1]) ? [e] :
|
||||
// e attaches to beginning of previous path
|
||||
[concat([e[0]], paths[s[1]])]
|
||||
) :// edge attaches to end of previous path
|
||||
is_undef(s[1]) ? [concat(paths[s[0]], [e[1]])] :
|
||||
// edge merges two paths
|
||||
s[0] != s[1] ? [concat(paths[s[0]], paths[s[1]])] :
|
||||
// edge closes a loop
|
||||
[concat(paths[s[0]], [e[1]])]));
|
||||
function vnf_halfspace(_arg1=_undef, _arg2=_undef,
|
||||
halfspace=_undef, vnf=_undef) =
|
||||
// here is where we wish that OpenSCAD had array lvalues...
|
||||
let(args=get_named_args([_arg1, _arg2], [[halfspace],[vnf]]),
|
||||
halfspace=args[0], vnf=args[1])
|
||||
assert(is_vector(halfspace, 4),
|
||||
"half-space must be passed as a length 4 affine form")
|
||||
assert(is_vnf(vnf), "must pass a vnf")
|
||||
// read points
|
||||
let(tmp1=_vnf_halfspace_pts(halfspace, vnf[0], vnf[1]),
|
||||
coords=tmp1[0], map=tmp1[1], inside=tmp1[2],
|
||||
// cut faces and generate edges
|
||||
tmp2= [for(f=vnf[1]) _vnf_halfspace_face(f, map, inside)],
|
||||
newfaces=[for(x=tmp2) if(x[0]!=[]) x[0]],
|
||||
newedges=[for(x=tmp2) each x[1]],
|
||||
// generate new faces
|
||||
paths=_vnf_halfspace_paths(newedges),
|
||||
loops=[for(p=paths) if(p[0] == last(p)) p])
|
||||
[coords, concat(newfaces, loops)];
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
Loading…
x
Reference in New Issue
Block a user