Fixed bezier patch functions to all accept mixes of triangular and rectangular patches in the patches list, instead of having separate tris arguments.

This commit is contained in:
Revar Desmera 2019-05-28 14:50:20 -07:00
parent 3180704da4
commit 01a52cdac4
2 changed files with 61 additions and 70 deletions

View File

@ -678,7 +678,7 @@ function bezier_patch_point(patch, u, v) = bez_point([for (bez = patch) bez_poin
// [[0,-33,30], [25,16,30]],
// [[50,-33,0]]
// ];
// trace_bezier_patches(tris=[tri], size=1, showcps=true);
// trace_bezier_patches(patches=[tri], size=1, showcps=true);
// pt = bezier_triangle_point(tri, 0.5, 0.2);
// translate(pt) color("magenta") sphere(d=3, $fn=12);
function bezier_triangle_point(tri, u, v) =
@ -693,19 +693,35 @@ function bezier_triangle_point(tri, u, v) =
// Function: is_tripatch()
// Description:
// Returns true if the given item is a triangular bezier patch.
function is_tripatch(x) = is_list(x) && is_list(x[0]) && is_vector(x[0][0]) && len(x[0])>1 && len(x[len(x)-1])==1;
// Function: is_rectpatch()
// Description:
// Returns true if the given item is a rectangular bezier patch.
function is_rectpatch(x) = is_list(x) && is_list(x[0]) && is_vector(x[0][0]) && len(x[0]) == len(x[len(x)-1]);
// Function: is_patch()
// Description:
// Returns true if the given item is a bezier patch.
function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// Function: bezier_patch()
// Usage:
// bezier_patch(patch, [splinesteps], [vertices], [faces]);
// Description:
// Calculate vertices and faces for forming a partial polyhedron
// from the given bezier rectangular patch. Returns a list containing
// two elements. The first is the list of unique vertices. The
// second is the list of faces, where each face is a list of indices
// into the list of vertices. You can chain calls to this, to add
// more vertices and faces for multiple bezier patches, to stitch
// them together into a complete polyhedron.
// Calculate vertices and faces for forming a partial polyhedron from the given bezier rectangular
// or triangular patch. Returns a list containing two elements. The first is the list of unique
// vertices. The second is the list of faces, where each face is a list of indices into the list of
// vertices. You can chain calls to this, to add more vertices and faces for multiple bezier
// patches, to stitch them together into a complete polyhedron.
// Arguments:
// patch = The rectangular array of endpoints and control points for this bezier patch.
// patch = The rectangular or triangular array of endpoints and control points for this bezier patch.
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
// vertices = Vertex list to add new points to. Default: []
// faces = Face list to add new faces to. Default: []
@ -718,7 +734,16 @@ function bezier_triangle_point(tri, u, v) =
// ];
// vnf = bezier_patch(patch, splinesteps=16);
// polyhedron(points=vnf[0], faces=vnf[1]);
// Example(3D):
// tri = [
// [[-50,-33,0], [-25,16,50], [0,66,0]],
// [[0,-33,50], [25,16,50]],
// [[50,-33,0]]
// ];
// vnf = bezier_patch(tri, splinesteps=16);
// polyhedron(points=vnf[0], faces=vnf[1]);
function bezier_patch(patch, splinesteps=16, vertices=[], faces=[]) =
is_tripatch(patch)? _bezier_triangle(patch, splinesteps=splinesteps, vertices=vertices, faces=faces) :
let(
base = len(vertices),
pts = [for (v=[0:1:splinesteps], u=[0:1:splinesteps]) bezier_patch_point(patch, u/splinesteps, v/splinesteps)],
@ -742,31 +767,7 @@ function bezier_patch(patch, splinesteps=16, vertices=[], faces=[]) =
function _tri_count(n) = (n*(1+n))/2;
// Function: bezier_triangle()
// Usage:
// bezier_triangle(tri, [splinesteps], [vertices], [faces]);
// Description:
// Calculate vertices and faces for forming a partial polyhedron
// from the given bezier triangular patch. Returns a list containing
// two elements. The first is the list of unique vertices. The
// second is the list of faces, where each face is a list of indices
// into the list of vertices. You can chain calls to this, to add
// more vertices and faces for multiple bezier patches, to stitch
// them together into a complete polyhedron.
// Arguments:
// tri = The triangular array of endpoints and control points for this bezier patch.
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
// vertices = Vertex list to add new points to. Default: []
// faces = Face list to add new faces to. Default: []
// Example(3D):
// tri = [
// [[-50,-33,0], [-25,16,50], [0,66,0]],
// [[0,-33,50], [25,16,50]],
// [[50,-33,0]]
// ];
// vnf = bezier_triangle(tri, splinesteps=16);
// polyhedron(points=vnf[0], faces=vnf[1]);
function bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
function _bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
let(
base = len(vertices),
pts = [
@ -906,7 +907,7 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
// bezier_surface(patches, [splinesteps], [vertices], [faces]);
// Description:
// Calculate vertices and faces for forming a (possibly partial)
// polyhedron from the given rectangular and triangular bezier
// polyhedron from the given rectangular and/or triangular bezier
// patches. Returns a list containing two elements. The first is
// the list of unique vertices. The second is the list of faces,
// where each face is a list of indices into the list of vertices.
@ -914,8 +915,7 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
// multiple bezier patches, to stitch them together into a complete
// polyhedron.
// Arguments:
// patches = A list of rectangular bezier patches.
// tris = A list of triangular bezier patches.
// patches = A list of triangular and/or rectangular bezier patches.
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
// vertices = Vertex list to add new points to. Default: []
// faces = Face list to add new faces to. Default: []
@ -934,14 +934,12 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
// ];
// vnf = bezier_surface(patches=[patch1, patch2], splinesteps=16);
// polyhedron(points=vnf[0], faces=vnf[1]);
function bezier_surface(patches=[], tris=[], splinesteps=16, i=0, vertices=[], faces=[]) =
function bezier_surface(patches=[], splinesteps=16, i=0, vertices=[], faces=[]) =
let(
vnf = (i >= len(patches))? [vertices, faces] :
bezier_patch(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces),
vnf2 = (i >= len(tris))? vnf :
bezier_triangle(tris[i], splinesteps=splinesteps, vertices=vnf[0], faces=vnf[1])
) (i >= len(patches) && i >= len(tris))? vnf2 :
bezier_surface(patches=patches, tris=tris, splinesteps=splinesteps, i=i+1, vertices=vnf2[0], faces=vnf2[1]);
bezier_patch(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces)
) (i >= len(patches))? vnf :
bezier_surface(patches=patches, splinesteps=splinesteps, i=i+1, vertices=vnf[0], faces=vnf[1]);
@ -950,15 +948,14 @@ function bezier_surface(patches=[], tris=[], splinesteps=16, i=0, vertices=[], f
// Module: bezier_polyhedron()
// Useage:
// bezier_polyhedron(patches)
// bezier_polyhedron(patches, [splinesteps], [vertices], [faces])
// Description:
// Takes a list of two or more bezier patches and attempts to make a complete polyhedron from them.
// Arguments:
// patches = A list of rectangular bezier patches.
// tris = A list of triangular bezier patches.
// patches = A list of triangular and/or rectangular bezier patches.
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
// vertices = Vertex list for additional non-bezier faces. Default: []
// faces = Additional non-bezier faces. Default: []
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
// Example:
// patch1 = [
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
@ -973,9 +970,9 @@ function bezier_surface(patches=[], tris=[], splinesteps=16, i=0, vertices=[], f
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// ];
// bezier_polyhedron([patch1, patch2], splinesteps=8);
module bezier_polyhedron(patches=[], tris=[], splinesteps=16, vertices=[], faces=[])
module bezier_polyhedron(patches=[], splinesteps=16, vertices=[], faces=[])
{
sfc = bezier_surface(patches=patches, tris=tris, splinesteps=splinesteps, vertices=vertices, faces=faces);
sfc = bezier_surface(patches=patches, splinesteps=splinesteps, vertices=vertices, faces=faces);
polyhedron(points=sfc[0], faces=sfc[1]);
}
@ -984,13 +981,10 @@ module bezier_polyhedron(patches=[], tris=[], splinesteps=16, vertices=[], faces
// Module: trace_bezier_patches()
// Usage:
// trace_bezier_patches(patches, [size], [showcps], [splinesteps]);
// trace_bezier_patches(tris, [size], [showcps], [splinesteps]);
// trace_bezier_patches(patches, tris, [size], [showcps], [splinesteps]);
// Description:
// Shows the surface, and optionally, control points of a list of bezier patches.
// Arguments:
// patches = A list of rectangular bezier patches.
// tris = A list of triangular bezier patches.
// splinesteps = Number of steps to divide each bezier segment into. default=16
// showcps = If true, show the controlpoints as well as the surface.
// size = Size to show control points and lines.
@ -1008,32 +1002,29 @@ module bezier_polyhedron(patches=[], tris=[], splinesteps=16, vertices=[], faces
// [[15,85,0], [33,100, 0], [ 67,100, 0], [ 85, 85,0]],
// ];
// trace_bezier_patches(patches=[patch1, patch2], splinesteps=8, showcps=true);
module trace_bezier_patches(patches=[], tris=[], size=1, showcps=false, splinesteps=16)
module trace_bezier_patches(patches=[], size=1, showcps=false, splinesteps=16)
{
if (showcps) {
for (patch = patches) {
place_copies(flatten(patch)) color("red") sphere(d=size*2);
color("cyan")
for (i=[0:1:len(patch)-1], j=[0:1:len(patch[i])-1]) {
if (i<len(patch)-1) extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
if (j<len(patch[i])-1) extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
if (is_tripatch(patch)) {
for (i=[0:1:len(patch)-2], j=[0:1:len(patch[i])-2]) {
extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
extrude_from_to(patch[i+1][j], patch[i][j+1]) circle(d=size);
}
} else {
for (i=[0:1:len(patch)-1], j=[0:1:len(patch[i])-1]) {
if (i<len(patch)-1) extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
if (j<len(patch[i])-1) extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
}
}
vnf = bezier_patch(patch, splinesteps=splinesteps);
color("blue") place_copies(vnf[0]) sphere(d=size);
}
for (patch = tris) {
place_copies(flatten(patch)) color("red") sphere(d=size*2);
color("cyan")
for (i=[0:1:len(patch)-2], j=[0:1:len(patch[i])-2]) {
extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
extrude_from_to(patch[i+1][j], patch[i][j+1]) circle(d=size);
}
vnf = bezier_triangle(patch, splinesteps=splinesteps);
color("blue") place_copies(vnf[0]) sphere(d=size);
}
}
bezier_polyhedron(patches=patches, tris=tris, splinesteps=splinesteps);
bezier_polyhedron(patches=patches, splinesteps=splinesteps);
}

View File

@ -104,9 +104,9 @@ module CR_cube(size=[100,100,100], r=10, splinesteps=8, cheat=false, debug=false
hull() bezier_polyhedron(patches=corners, splinesteps=splinesteps);
} else {
if (debug) {
trace_bezier_patches(patches=concat(edges, faces), tris=corners, showcps=true, splinesteps=splinesteps);
trace_bezier_patches(patches=concat(edges, faces, corners), showcps=true, splinesteps=splinesteps);
} else {
bezier_polyhedron(patches=concat(edges, faces), tris=corners, splinesteps=splinesteps);
bezier_polyhedron(patches=concat(edges, faces, corners), splinesteps=splinesteps);
}
}
}