Added arc()

This commit is contained in:
Revar Desmera 2019-05-28 21:23:59 -07:00
parent ff1fa4e505
commit 0836e821f4

View File

@ -113,6 +113,120 @@ module pie_slice2d(r=undef, d=undef, ang=30) {
} }
// Function&Module: arc()
// Usage: 2D arc from 0º to `angle` degrees.
// arc(N, r|d, angle);
// Usage: 2D arc from START to END degrees.
// arc(N, r|d, angle=[START,END])
// Usage: 2D arc from `start` to `start+angle` degrees.
// arc(N, r|d, start, angle)
// Usage: 2D circle segment by `width` and `thickness`, starting and ending on the X axis.
// arc(N, width, thickness)
// Usage: Shortest 2d or 3d arc around centerpoint `cp`, starting at P0 and ending on the vector pointing from `cp` to `P1`.
// arc(N, cp, points=[P0,P1])
// Usage: 2D or 3D arc, starting at `P0`, passing through `P1` and ending at `P2`.
// arc(N, points=[P0,P1,P2])
// Description:
// If called as a function, returns a 2D or 3D path forming an arc.
// If called as a module, creates a 2D arc polygon or pie slice shape.
// Arguments:
// N = Number of line segments to form the arc curve from.
// r = Radius of the arc.
// d = Diameter of the arc.
// angle = If a scalar, specifies the end angle in degrees. If a vector of two scalars, specifies start and end angles.
// cp = Centerpoint of arc.
// points = Points on the arc.
// width = If given with `thickness`, arc starts and ends on X axis, to make a circle segment.
// thickness = If given with `width`, arc starts and ends on X axis, to make a circle segment.
// start = Start angle of arc.
// wedge = If true, include centerpoint `cp` in output to form pie slice shape.
// Examples(2D):
// arc(N=8, r=30, angle=30, wedge=true);
// arc(N=8, d=60, angle=30, wedge=true);
// arc(N=12, d=60, angle=120);
// arc(N=12, d=60, angle=120, wedge=true);
// arc(N=12, r=30, angle=[75,135], wedge=true);
// arc(N=12, r=30, start=45, angle=75, wedge=true);
// arc(N=24, width=60, thickness=20);
// arc(N=12, cp=[-10,5], points=[[20,10],[0,35]], wedge=true);
// arc(N=12, points=[[30,-5],[20,10],[-10,20]], wedge=true);
// Example(FlatSpin):
// include <BOSL2/paths.scad>
// path = arc(N=12, points=[[0,30,0],[0,0,30],[30,0,0]]);
// trace_polyline(path, showpts=true, color="cyan");
module arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false)
{
path = arc(N=N, r=r, angle=angle, d=d, cp=cp, points=points, width=width, thickness=thickness, start=start, wedge=wedge);
polygon(path);
}
function arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false) =
// First try for 2d arc specified by angles
is_def(width) && is_def(thickness)? (
arc(N,points=[[width/2,0], [0,thickness], [-width/2,0]],wedge=wedge)
) : is_def(angle)? (
let(
parmok = is_undef(points) && is_undef(width) && is_undef(thickness) &&
((is_vector(angle) && len(angle)==2 && is_undef(start)) || is_num(angle))
)
assert(parmok,"Invalid parameters in arc")
let(
cp = is_def(cp) ? cp : [0,0],
start = is_def(start)? start : is_vector(angle) ? angle[0] : 0,
angle = is_vector(angle)? angle[1]-angle[0] : angle,
r = get_radius(r=r,d=d),
N = max(3,N),
arcpoints = [for(i=[0:N-1]) let(theta = start + i*angle/(N-1)) r*[cos(theta),sin(theta)]+cp],
extra = wedge? [cp] : []
)
concat(extra,arcpoints)
) :
assert(is_list(points),"Invalid parameters")
// Arc is 3d, so transform points to 2d and make a recursive call, then remap back to 3d
len(points[0])==3? (
let(
thirdpoint = is_def(cp) ? cp : points[2],
center2d = is_def(cp) ? project_plane(cp,thirdpoint,points[0],points[1]) : undef,
points2d = project_plane(points,thirdpoint,points[0],points[1])
)
lift_plane(arc(N,cp=center2d,points=points2d,wedge=wedge),thirdpoint,points[0],points[1])
) : is_def(cp)? (
// Arc defined by center plus two points, will have radius defined by center and points[0]
// and extent defined by direction of point[1] from the center
let(
angle = vector_angle(points[0], cp, points[1]),
v1 = points[0]-cp,
v2 = points[1]-cp,
dir = sign(det2([v1,v2])), // z component of cross product
r=norm(v1)
)
assert(dir!=0,"Collinear inputs don't define a unique arc")
arc(N,cp=cp,r=r,start=atan2(v1.y,v1.x),angle=dir*angle,wedge=wedge)
) : (
// Final case is arc passing through three points, starting at point[0] and ending at point[3]
let(col = collinear(points[0],points[1],points[2],1e-3))
assert(!col, "Collinear inputs do not define an arc")
let(
cp = line_intersection(_normal_segment(points[0],points[1]),_normal_segment(points[1],points[2])),
// select order to be counterclockwise
dir = det2([points[1]-points[0],points[2]-points[1]]) > 0,
points = dir? select(points,[0,2]) : select(points,[2,0]),
r = norm(points[0]-cp),
theta_start = atan2(points[0].y-cp.y, points[0].x-cp.x),
theta_end = atan2(points[1].y-cp.y, points[1].x-cp.x),
angle = posmod(theta_end-theta_start, 360),
arcpts = arc(N,cp=cp,r=r,start=theta_start,angle=angle,wedge=wedge)
)
dir ? arcpts : reverse(arcpts)
);
function _normal_segment(p1,p2) =
let(center = (p1+p2)/2)
[center, center + norm(p1-p2)/2 * line_normal(p1,p2)];
// Function&Module: trapezoid() // Function&Module: trapezoid()
// Usage: // Usage:
// trapezoid(h, w1, w2); // trapezoid(h, w1, w2);